Issue fix
Browse files
app.py
CHANGED
@@ -54,22 +54,18 @@ class Blip2QFormer(nn.Module):
|
|
54 |
)
|
55 |
|
56 |
self.bert = BertModel(self.bert_config, add_pooling_layer=False).to(torch.float16)
|
57 |
-
|
58 |
-
# Replace position embeddings with a dummy implementation
|
59 |
-
self.bert.embeddings.position_embeddings = nn.Identity() # Completely bypass position embeddings
|
60 |
-
|
61 |
-
# Disable word embeddings
|
62 |
-
self.bert.embeddings.word_embeddings = None
|
63 |
-
|
64 |
-
# Initialize query tokens
|
65 |
self.query_tokens = nn.Parameter(
|
66 |
-
torch.zeros(1, num_query_tokens, self.bert_config.hidden_size
|
67 |
)
|
68 |
-
self.vision_proj = nn.
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def load_from_pretrained(self, url_or_filename):
|
75 |
if url_or_filename.startswith('http'):
|
@@ -77,38 +73,31 @@ class Blip2QFormer(nn.Module):
|
|
77 |
checkpoint = torch.load(BytesIO(response.content), map_location='cpu')
|
78 |
else:
|
79 |
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
80 |
-
|
81 |
-
# Load Q-Former weights only
|
82 |
state_dict = checkpoint['model'] if 'model' in checkpoint else checkpoint
|
83 |
msg = self.load_state_dict(state_dict, strict=False)
|
84 |
-
# print(f"Loaded Q-Former weights with message: {msg}")
|
85 |
-
|
86 |
-
def forward(self, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None):
|
87 |
-
if query_embeds is None:
|
88 |
-
query_embeds = self.query_tokens.expand(encoder_hidden_states.shape[0], -1, -1)
|
89 |
|
|
|
90 |
# Project visual features
|
91 |
-
visual_embeds = self.vision_proj(
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
batch_size = query_embeds.size(0)
|
101 |
-
extended_attention_mask = encoder_attention_mask.unsqueeze(1).expand(-1, query_embeds.size(1), -1)
|
102 |
|
103 |
-
|
104 |
-
|
|
|
105 |
attention_mask=None,
|
106 |
encoder_hidden_states=visual_embeds,
|
107 |
-
encoder_attention_mask=
|
108 |
return_dict=True
|
109 |
)
|
110 |
-
return encoder_outputs.last_hidden_state
|
111 |
|
|
|
112 |
|
113 |
class LayerNorm(nn.LayerNorm):
|
114 |
"""Subclass torch's LayerNorm to handle fp16."""
|
@@ -137,19 +126,13 @@ class SkinGPT4(nn.Module):
|
|
137 |
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth"):
|
138 |
super().__init__()
|
139 |
# Image encoder parameters from paper
|
|
|
140 |
self.dtype = torch.float16
|
141 |
self.H, self.W, self.C = 224, 224, 3
|
142 |
self.P = 14 # Patch size
|
143 |
self.D = 1408 # ViT embedding dimension
|
144 |
self.num_query_tokens = 32
|
145 |
|
146 |
-
# self.tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf",
|
147 |
-
# token=token, padding_side="right")
|
148 |
-
#
|
149 |
-
# print("Loaded tokenizer")
|
150 |
-
# self.tokenizer.add_special_tokens({'additional_special_tokens': ['<ImageHere>']})
|
151 |
-
|
152 |
-
# Initialize components
|
153 |
self.vit = self._init_vit(vit_checkpoint_path)
|
154 |
print("Loaded ViT")
|
155 |
self.ln_vision = nn.LayerNorm(self.D).to(self.dtype)
|
@@ -161,7 +144,10 @@ class SkinGPT4(nn.Module):
|
|
161 |
self.q_former.load_from_pretrained(q_former_model)
|
162 |
for param in self.q_former.parameters():
|
163 |
param.requires_grad = False
|
164 |
-
self.q_former
|
|
|
|
|
|
|
165 |
print("Loaded QFormer")
|
166 |
|
167 |
self.tokenizer = LlamaTokenizer.from_pretrained(
|
@@ -169,24 +155,18 @@ class SkinGPT4(nn.Module):
|
|
169 |
token=token,
|
170 |
padding_side="right"
|
171 |
)
|
172 |
-
self.tokenizer.add_special_tokens({'additional_special_tokens': ['<Img>', '</Img>', '<
|
173 |
|
174 |
self.llama = self._init_llama()
|
175 |
-
# self.llama.resize_token_embeddings(len(self.tokenizer))
|
176 |
self.llama.resize_token_embeddings(len(self.tokenizer))
|
177 |
|
178 |
self.llama_proj = nn.Linear(
|
179 |
self.q_former.bert_config.hidden_size,
|
180 |
self.llama.config.hidden_size
|
181 |
).to(self.dtype)
|
182 |
-
self._init_alignment_projection()
|
183 |
-
print("Loaded Llama")
|
184 |
-
# Initialize learnable query tokens
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
)
|
189 |
-
nn.init.normal_(self.query_tokens, std=0.02)
|
190 |
|
191 |
def _init_vit(self, vit_checkpoint_path):
|
192 |
"""Initialize EVA-ViT-G with paper specifications"""
|
@@ -297,28 +277,13 @@ class SkinGPT4(nn.Module):
|
|
297 |
return x # (B, N+1, D)
|
298 |
|
299 |
def forward(self, images):
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
# ViT processing
|
305 |
-
x = x.to(self.dtype)
|
306 |
-
self.vit = self.vit.to(self.dtype)
|
307 |
-
vit_output = self.forward_encoder(x) # (B, N+1, D)
|
308 |
-
|
309 |
-
# Q-Former processing
|
310 |
-
query_tokens = self.query_tokens.expand(x.size(0), -1, -1).to(torch.float16)
|
311 |
-
qformer_output = self.q_former(
|
312 |
-
query_embeds=query_tokens,
|
313 |
-
encoder_hidden_states=vit_output.to(torch.float16),
|
314 |
-
encoder_attention_mask=torch.ones_like(vit_output[:, :, 0])
|
315 |
-
).to(self.dtype)
|
316 |
-
|
317 |
-
# Alignment projection
|
318 |
-
aligned_features = self.llama_proj(qformer_output.to(self.dtype))
|
319 |
-
|
320 |
return aligned_features
|
321 |
|
|
|
322 |
def add_to_history(self, role, content):
|
323 |
self.conversation_history.append({"role": role, "content": content})
|
324 |
|
@@ -347,85 +312,42 @@ class SkinGPT4(nn.Module):
|
|
347 |
|
348 |
def generate(self, images, user_input=None, max_length=300):
|
349 |
print("Analysing the image to generate the diagnosis")
|
350 |
-
# Get aligned features
|
351 |
aligned_features = self.forward(images)
|
352 |
print("Generated the aligned features with ViT and Qformer")
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
# "<Image>",
|
363 |
-
# "</Img> Could you describe the skin disease in this image for me? ### Response:"
|
364 |
-
# ]
|
365 |
-
prompt = "### Instruction: <Img><Image></Img> Could you describe the skin disease in this image for me? ### Response:"
|
366 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(images.device)
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
# input_ids = torch.cat([
|
372 |
-
# tokens_before[:, :-1], # Remove EOS from first part
|
373 |
-
# torch.full((1, 1), self.tokenizer.convert_tokens_to_ids("<Image>")).to(images.device),
|
374 |
-
# tokens_after[:, 1:] # Remove BOS from second part
|
375 |
-
# ], dim=1)
|
376 |
-
# embeddings = self.llama.model.embed_tokens(input_ids)
|
377 |
-
# image_token_pos = (input_ids == self.tokenizer.convert_tokens_to_ids("<Image>")).nonzero()
|
378 |
-
# embeddings[image_token_pos] = aligned_features.mean(dim=1)
|
379 |
-
|
380 |
-
image_token_id = self.tokenizer.convert_tokens_to_ids("<Image>")
|
381 |
-
image_token_pos = (inputs.input_ids == image_token_id).nonzero()
|
382 |
-
|
383 |
-
if image_token_pos.shape[0] != 1:
|
384 |
-
raise ValueError(f"Expected 1 image token, found {image_token_pos.shape[0]}")
|
385 |
-
|
386 |
# Prepare embeddings
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
embeddings[row, col] = aligned_features.mean(dim=1)
|
391 |
|
392 |
outputs = self.llama.generate(
|
393 |
-
inputs_embeds=
|
394 |
-
|
395 |
temperature=0.7,
|
396 |
top_p=0.9,
|
397 |
do_sample=True,
|
398 |
-
pad_token_id=self.tokenizer.eos_token_id
|
|
|
|
|
399 |
)
|
|
|
400 |
print(f"Output from llama : {outputs}")
|
401 |
full_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
# self.tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf",
|
407 |
-
# token=token, padding_side="right")
|
408 |
-
# self.tokenizer.add_special_tokens({'additional_special_tokens': ['<ImageHere>']})
|
409 |
-
# self.llama.resize_token_embeddings(len(self.tokenizer))
|
410 |
-
# tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf",
|
411 |
-
# token=token, padding_side="right")
|
412 |
-
# tokenizer.add_special_tokens({'additional_special_tokens': ['<ImageHere>']})
|
413 |
-
# self.llama.resize_token_embeddings(len(tokenizer))
|
414 |
-
# inputs = self.tokenizer(prompt, return_tensors="pt").to(images.device)
|
415 |
-
# image_embeddings = self.llama.model.embed_tokens(inputs.input_ids)
|
416 |
-
# image_token_index = torch.where(inputs.input_ids == self.tokenizer.convert_tokens_to_ids("<ImageHere>"))
|
417 |
-
# image_embeddings[image_token_index] = aligned_features.mean(dim=1) # Pool query tokens
|
418 |
-
# print("Generating the diagnosis with llama")
|
419 |
-
# # Generate response
|
420 |
-
# outputs = self.llama.generate(
|
421 |
-
# inputs_embeds=image_embeddings,
|
422 |
-
# max_length=max_length,
|
423 |
-
# temperature=0.7,
|
424 |
-
# top_p=0.9,
|
425 |
-
# do_sample=True
|
426 |
-
# )
|
427 |
-
# print("Generated diagnosis")
|
428 |
-
# return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
429 |
|
430 |
class SkinGPTClassifier:
|
431 |
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
@@ -433,8 +355,7 @@ class SkinGPTClassifier:
|
|
433 |
self.conversation_history = []
|
434 |
|
435 |
with st.spinner("Loading AI models (this may take several minutes)..."):
|
436 |
-
self.
|
437 |
-
self.resnet_feature_extractor = None
|
438 |
|
439 |
# Image transformations
|
440 |
self.transform = transforms.Compose([
|
@@ -443,26 +364,27 @@ class SkinGPTClassifier:
|
|
443 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
444 |
])
|
445 |
|
446 |
-
def
|
447 |
model_path = hf_hub_download(
|
448 |
repo_id="KeerthiVM/SkinCancerDiagnosis",
|
449 |
filename="dermnet_finetuned_version1.pth",
|
450 |
)
|
451 |
-
|
452 |
-
|
|
|
|
|
453 |
|
454 |
def predict(self, image):
|
455 |
image = image.convert('RGB')
|
456 |
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
457 |
-
|
458 |
-
image_tensor
|
459 |
-
)
|
460 |
|
461 |
return {
|
462 |
-
"
|
|
|
463 |
}
|
464 |
|
465 |
-
# @st.cache_resource
|
466 |
def get_classifier():
|
467 |
return SkinGPTClassifier()
|
468 |
|
|
|
54 |
)
|
55 |
|
56 |
self.bert = BertModel(self.bert_config, add_pooling_layer=False).to(torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
self.query_tokens = nn.Parameter(
|
58 |
+
torch.zeros(1, num_query_tokens, self.bert_config.hidden_size)
|
59 |
)
|
60 |
+
self.vision_proj = nn.Linear(vision_width, self.bert_config.hidden_size)
|
61 |
+
|
62 |
+
# Initialize weights
|
63 |
+
self._init_weights()
|
64 |
|
65 |
+
def _init_weights(self):
|
66 |
+
nn.init.normal_(self.query_tokens, std=0.02)
|
67 |
+
nn.init.xavier_uniform_(self.vision_proj.weight)
|
68 |
+
nn.init.constant_(self.vision_proj.bias, 0)
|
69 |
|
70 |
def load_from_pretrained(self, url_or_filename):
|
71 |
if url_or_filename.startswith('http'):
|
|
|
73 |
checkpoint = torch.load(BytesIO(response.content), map_location='cpu')
|
74 |
else:
|
75 |
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
|
|
|
|
76 |
state_dict = checkpoint['model'] if 'model' in checkpoint else checkpoint
|
77 |
msg = self.load_state_dict(state_dict, strict=False)
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
def forward(self, visual_features):
|
80 |
# Project visual features
|
81 |
+
visual_embeds = self.vision_proj(visual_features)
|
82 |
+
visual_attention_mask = torch.ones(
|
83 |
+
visual_embeds.size()[:-1],
|
84 |
+
dtype=torch.long,
|
85 |
+
device=visual_embeds.device
|
86 |
+
)
|
87 |
+
|
88 |
+
# Expand query tokens
|
89 |
+
query_tokens = self.query_tokens.expand(visual_embeds.shape[0], -1, -1)
|
|
|
|
|
90 |
|
91 |
+
# Forward through BERT
|
92 |
+
outputs = self.bert(
|
93 |
+
None, # No text input
|
94 |
attention_mask=None,
|
95 |
encoder_hidden_states=visual_embeds,
|
96 |
+
encoder_attention_mask=visual_attention_mask,
|
97 |
return_dict=True
|
98 |
)
|
|
|
99 |
|
100 |
+
return outputs.last_hidden_state
|
101 |
|
102 |
class LayerNorm(nn.LayerNorm):
|
103 |
"""Subclass torch's LayerNorm to handle fp16."""
|
|
|
126 |
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth"):
|
127 |
super().__init__()
|
128 |
# Image encoder parameters from paper
|
129 |
+
self.device = device
|
130 |
self.dtype = torch.float16
|
131 |
self.H, self.W, self.C = 224, 224, 3
|
132 |
self.P = 14 # Patch size
|
133 |
self.D = 1408 # ViT embedding dimension
|
134 |
self.num_query_tokens = 32
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
self.vit = self._init_vit(vit_checkpoint_path)
|
137 |
print("Loaded ViT")
|
138 |
self.ln_vision = nn.LayerNorm(self.D).to(self.dtype)
|
|
|
144 |
self.q_former.load_from_pretrained(q_former_model)
|
145 |
for param in self.q_former.parameters():
|
146 |
param.requires_grad = False
|
147 |
+
for module in [self.vit, self.ln_vision, self.q_former]:
|
148 |
+
for param in module.parameters():
|
149 |
+
param.requires_grad = False
|
150 |
+
module.eval()
|
151 |
print("Loaded QFormer")
|
152 |
|
153 |
self.tokenizer = LlamaTokenizer.from_pretrained(
|
|
|
155 |
token=token,
|
156 |
padding_side="right"
|
157 |
)
|
158 |
+
self.tokenizer.add_special_tokens({'additional_special_tokens': ['<Img>', '</Img>', '<ImageHere>']})
|
159 |
|
160 |
self.llama = self._init_llama()
|
|
|
161 |
self.llama.resize_token_embeddings(len(self.tokenizer))
|
162 |
|
163 |
self.llama_proj = nn.Linear(
|
164 |
self.q_former.bert_config.hidden_size,
|
165 |
self.llama.config.hidden_size
|
166 |
).to(self.dtype)
|
|
|
|
|
|
|
167 |
|
168 |
+
for param in self.llama_proj.parameters():
|
169 |
+
param.requires_grad = False
|
|
|
|
|
170 |
|
171 |
def _init_vit(self, vit_checkpoint_path):
|
172 |
"""Initialize EVA-ViT-G with paper specifications"""
|
|
|
277 |
return x # (B, N+1, D)
|
278 |
|
279 |
def forward(self, images):
|
280 |
+
x = self._create_patches(images)
|
281 |
+
vit_output = self.forward_encoder(x)
|
282 |
+
qformer_output = self.q_former(vit_output)
|
283 |
+
aligned_features = self.llama_proj(qformer_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
return aligned_features
|
285 |
|
286 |
+
|
287 |
def add_to_history(self, role, content):
|
288 |
self.conversation_history.append({"role": role, "content": content})
|
289 |
|
|
|
312 |
|
313 |
def generate(self, images, user_input=None, max_length=300):
|
314 |
print("Analysing the image to generate the diagnosis")
|
|
|
315 |
aligned_features = self.forward(images)
|
316 |
print("Generated the aligned features with ViT and Qformer")
|
317 |
+
prompt = (
|
318 |
+
"[INST] <<SYS>>\n"
|
319 |
+
"You are a dermatology AI assistant. Analyze this skin image carefully and provide:\n"
|
320 |
+
"1. A description of visible features\n"
|
321 |
+
"2. Potential diagnoses\n"
|
322 |
+
"3. Recommendations for next steps\n"
|
323 |
+
"<</SYS>>\n\n"
|
324 |
+
"<Img><ImageHere></Img> Could you describe the skin disease in this image for me? [/INST]"
|
325 |
+
)
|
|
|
|
|
|
|
|
|
326 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(images.device)
|
327 |
+
image_token_id = self.tokenizer.convert_tokens_to_ids("<ImageHere>")
|
328 |
+
image_token_pos = torch.where(inputs.input_ids == image_token_id)
|
329 |
+
if len(image_token_pos[0]) == 0:
|
330 |
+
raise ValueError("Image token not found in prompt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
# Prepare embeddings
|
332 |
+
input_embeddings = self.llama.model.embed_tokens(inputs.input_ids)
|
333 |
+
projected_features = self.llama_proj(aligned_features.mean(dim=1, keepdim=True))
|
334 |
+
input_embeddings[image_token_pos] = projected_features
|
|
|
335 |
|
336 |
outputs = self.llama.generate(
|
337 |
+
inputs_embeds=input_embeddings,
|
338 |
+
max_new_tokens=max_length,
|
339 |
temperature=0.7,
|
340 |
top_p=0.9,
|
341 |
do_sample=True,
|
342 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
343 |
+
attention_mask=inputs.attention_mask,
|
344 |
+
num_return_sequences=1
|
345 |
)
|
346 |
+
|
347 |
print(f"Output from llama : {outputs}")
|
348 |
full_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
349 |
+
return full_output.split("[/INST]")[-1].strip()
|
350 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
class SkinGPTClassifier:
|
353 |
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
|
|
355 |
self.conversation_history = []
|
356 |
|
357 |
with st.spinner("Loading AI models (this may take several minutes)..."):
|
358 |
+
self.model = self._load_model()
|
|
|
359 |
|
360 |
# Image transformations
|
361 |
self.transform = transforms.Compose([
|
|
|
364 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
365 |
])
|
366 |
|
367 |
+
def _load_model(self):
|
368 |
model_path = hf_hub_download(
|
369 |
repo_id="KeerthiVM/SkinCancerDiagnosis",
|
370 |
filename="dermnet_finetuned_version1.pth",
|
371 |
)
|
372 |
+
model = SkinGPT4(vit_checkpoint_path=model_path).eval()
|
373 |
+
model = model.to(self.device)
|
374 |
+
model.eval()
|
375 |
+
return model
|
376 |
|
377 |
def predict(self, image):
|
378 |
image = image.convert('RGB')
|
379 |
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
380 |
+
with torch.no_grad():
|
381 |
+
diagnosis = self.model.generate(image_tensor)
|
|
|
382 |
|
383 |
return {
|
384 |
+
"diagnosis": diagnosis,
|
385 |
+
"visual_features": None # Can return features if needed
|
386 |
}
|
387 |
|
|
|
388 |
def get_classifier():
|
389 |
return SkinGPTClassifier()
|
390 |
|