Initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
import torch
|
4 |
+
import io
|
5 |
+
import os
|
6 |
+
from fpdf import FPDF
|
7 |
+
import nest_asyncio
|
8 |
+
nest_asyncio.apply()
|
9 |
+
device='cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
+
|
11 |
+
st.set_page_config(page_title="DermBOT", page_icon="π§¬", layout="centered")
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
from torchvision import transforms
|
16 |
+
from PIL import Image
|
17 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer, BertModel, BertConfig
|
18 |
+
from eva_vit import create_eva_vit_g
|
19 |
+
import requests
|
20 |
+
from io import BytesIO
|
21 |
+
import os
|
22 |
+
|
23 |
+
token = os.getenv("HF_TOKEN")
|
24 |
+
if not token:
|
25 |
+
raise ValueError("Hugging Face token not found in environment variables")
|
26 |
+
import warnings
|
27 |
+
|
28 |
+
warnings.filterwarnings("ignore")
|
29 |
+
|
30 |
+
|
31 |
+
class Blip2QFormer(nn.Module):
|
32 |
+
def __init__(self, num_query_tokens=32, vision_width=1408):
|
33 |
+
super().__init__()
|
34 |
+
# Load pre-trained Q-Former config
|
35 |
+
self.bert_config = BertConfig(
|
36 |
+
vocab_size=30522,
|
37 |
+
hidden_size=768,
|
38 |
+
num_hidden_layers=12,
|
39 |
+
num_attention_heads=12,
|
40 |
+
intermediate_size=3072,
|
41 |
+
hidden_act="gelu",
|
42 |
+
hidden_dropout_prob=0.1,
|
43 |
+
attention_probs_dropout_prob=0.1,
|
44 |
+
max_position_embeddings=512,
|
45 |
+
type_vocab_size=2,
|
46 |
+
initializer_range=0.02,
|
47 |
+
layer_norm_eps=1e-12,
|
48 |
+
pad_token_id=0,
|
49 |
+
position_embedding_type="absolute",
|
50 |
+
use_cache=True,
|
51 |
+
classifier_dropout=None,
|
52 |
+
)
|
53 |
+
|
54 |
+
self.bert = BertModel(self.bert_config, add_pooling_layer=False).to(torch.float16)
|
55 |
+
|
56 |
+
# Replace position embeddings with a dummy implementation
|
57 |
+
self.bert.embeddings.position_embeddings = nn.Identity() # Completely bypass position embeddings
|
58 |
+
|
59 |
+
# Disable word embeddings
|
60 |
+
self.bert.embeddings.word_embeddings = None
|
61 |
+
|
62 |
+
# Initialize query tokens
|
63 |
+
self.query_tokens = nn.Parameter(
|
64 |
+
torch.zeros(1, num_query_tokens, self.bert_config.hidden_size, dtype=torch.float16)
|
65 |
+
)
|
66 |
+
self.vision_proj = nn.Sequential(
|
67 |
+
nn.Linear(vision_width, self.bert_config.hidden_size),
|
68 |
+
nn.LayerNorm(self.bert_config.hidden_size)
|
69 |
+
).to(torch.float16)
|
70 |
+
|
71 |
+
|
72 |
+
def load_from_pretrained(self, url_or_filename):
|
73 |
+
if url_or_filename.startswith('http'):
|
74 |
+
response = requests.get(url_or_filename)
|
75 |
+
checkpoint = torch.load(BytesIO(response.content), map_location='cpu')
|
76 |
+
else:
|
77 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
78 |
+
|
79 |
+
# Load Q-Former weights only
|
80 |
+
state_dict = checkpoint['model'] if 'model' in checkpoint else checkpoint
|
81 |
+
msg = self.load_state_dict(state_dict, strict=False)
|
82 |
+
# print(f"Loaded Q-Former weights with message: {msg}")
|
83 |
+
|
84 |
+
def forward(self, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None):
|
85 |
+
if query_embeds is None:
|
86 |
+
query_embeds = self.query_tokens.expand(encoder_hidden_states.shape[0], -1, -1)
|
87 |
+
|
88 |
+
# Project visual features
|
89 |
+
visual_embeds = self.vision_proj(encoder_hidden_states)
|
90 |
+
|
91 |
+
# Create proper attention mask
|
92 |
+
if encoder_attention_mask is None:
|
93 |
+
encoder_attention_mask = torch.ones(
|
94 |
+
visual_embeds.size()[:-1],
|
95 |
+
dtype=torch.long,
|
96 |
+
device=visual_embeds.device
|
97 |
+
)
|
98 |
+
batch_size = query_embeds.size(0)
|
99 |
+
extended_attention_mask = encoder_attention_mask.unsqueeze(1).expand(-1, query_embeds.size(1), -1)
|
100 |
+
|
101 |
+
encoder_outputs = self.bert.encoder(
|
102 |
+
hidden_states=query_embeds,
|
103 |
+
attention_mask=None,
|
104 |
+
encoder_hidden_states=visual_embeds,
|
105 |
+
encoder_attention_mask=encoder_attention_mask,
|
106 |
+
return_dict=True
|
107 |
+
)
|
108 |
+
return encoder_outputs.last_hidden_state
|
109 |
+
|
110 |
+
|
111 |
+
class LayerNorm(nn.LayerNorm):
|
112 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
113 |
+
|
114 |
+
def forward(self, x: torch.Tensor):
|
115 |
+
orig_type = x.dtype
|
116 |
+
ret = super().forward(x.type(torch.float32))
|
117 |
+
return ret.type(orig_type)
|
118 |
+
|
119 |
+
|
120 |
+
class ViTClassifier(nn.Module):
|
121 |
+
def __init__(self, vit, ln_vision, num_labels):
|
122 |
+
super(ViTClassifier, self).__init__()
|
123 |
+
self.vit = vit # Pretrained ViT from MiniGPT-4
|
124 |
+
self.ln_vision = ln_vision # LayerNorm from MiniGPT-4
|
125 |
+
self.classifier = nn.Linear(vit.num_features, num_labels)
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
features = self.ln_vision(self.vit(x)) # [batch, seq_len, dim]
|
129 |
+
cls_token = features[:, 0, :] # Extract CLS token
|
130 |
+
return self.classifier(cls_token)
|
131 |
+
|
132 |
+
|
133 |
+
class SkinGPT4(nn.Module):
|
134 |
+
def __init__(self, vit_checkpoint_path,
|
135 |
+
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth"):
|
136 |
+
super().__init__()
|
137 |
+
# Image encoder parameters from paper
|
138 |
+
self.dtype = torch.float16
|
139 |
+
self.H, self.W, self.C = 224, 224, 3
|
140 |
+
self.P = 14 # Patch size
|
141 |
+
self.D = 1408 # ViT embedding dimension
|
142 |
+
self.num_query_tokens = 32
|
143 |
+
# Initialize components
|
144 |
+
self.vit = self._init_vit(vit_checkpoint_path)
|
145 |
+
print("Loaded ViT")
|
146 |
+
self.ln_vision = nn.LayerNorm(self.D).to(self.dtype)
|
147 |
+
|
148 |
+
self.q_former = Blip2QFormer(
|
149 |
+
num_query_tokens=self.num_query_tokens,
|
150 |
+
vision_width=self.D
|
151 |
+
).to(self.dtype)
|
152 |
+
self.q_former.load_from_pretrained(q_former_model)
|
153 |
+
for param in self.q_former.parameters():
|
154 |
+
param.requires_grad = False
|
155 |
+
self.q_former.eval()
|
156 |
+
print("Loaded QFormer")
|
157 |
+
self.llama = self._init_llama()
|
158 |
+
self.llama_proj = nn.Linear(
|
159 |
+
self.q_former.bert_config.hidden_size,
|
160 |
+
self.llama.config.hidden_size
|
161 |
+
).to(self.dtype)
|
162 |
+
self._init_alignment_projection()
|
163 |
+
print("Loaded Llama")
|
164 |
+
# Initialize learnable query tokens
|
165 |
+
|
166 |
+
self.query_tokens = nn.Parameter(
|
167 |
+
torch.zeros(1, self.num_query_tokens, self.q_former.bert_config.hidden_size)
|
168 |
+
)
|
169 |
+
nn.init.normal_(self.query_tokens, std=0.02)
|
170 |
+
self.tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf",
|
171 |
+
token=token, padding_side="right")
|
172 |
+
|
173 |
+
print("Loaded tokenizer")
|
174 |
+
def _init_vit(self, vit_checkpoint_path):
|
175 |
+
"""Initialize EVA-ViT-G with paper specifications"""
|
176 |
+
vit = create_eva_vit_g(
|
177 |
+
img_size=(self.H, self.W),
|
178 |
+
patch_size=self.P,
|
179 |
+
embed_dim=self.D,
|
180 |
+
depth=39,
|
181 |
+
num_heads=16,
|
182 |
+
mlp_ratio=4.3637,
|
183 |
+
qkv_bias=True,
|
184 |
+
drop_path_rate=0.1,
|
185 |
+
norm_layer=nn.LayerNorm,
|
186 |
+
init_values=1e-5
|
187 |
+
).to(self.dtype)
|
188 |
+
if not hasattr(vit, 'norm'):
|
189 |
+
vit.norm = nn.LayerNorm(self.D)
|
190 |
+
checkpoint = torch.load(vit_checkpoint_path, map_location='cpu')
|
191 |
+
# 3. Filter weights for ViT components only
|
192 |
+
vit_weights = {k.replace("vit.", ""): v
|
193 |
+
for k, v in checkpoint.items()
|
194 |
+
if k.startswith("vit.")}
|
195 |
+
|
196 |
+
# 4. Load weights while ignoring classifier head
|
197 |
+
vit.load_state_dict(vit_weights, strict=False)
|
198 |
+
|
199 |
+
# 5. Freeze according to paper specs
|
200 |
+
for param in vit.parameters():
|
201 |
+
param.requires_grad = False
|
202 |
+
|
203 |
+
return vit.eval()
|
204 |
+
|
205 |
+
def _init_llama(self):
|
206 |
+
"""Initialize frozen LLaMA-2-13b-chat with proper error handling"""
|
207 |
+
try:
|
208 |
+
from transformers import BitsAndBytesConfig
|
209 |
+
from accelerate import init_empty_weights
|
210 |
+
|
211 |
+
# Configure 4-bit quantization to reduce memory usage
|
212 |
+
# quantization_config = BitsAndBytesConfig(
|
213 |
+
# load_in_4bit=True,
|
214 |
+
# bnb_4bit_compute_dtype=torch.float16,
|
215 |
+
# bnb_4bit_use_double_quant=True,
|
216 |
+
# bnb_4bit_quant_type="nf4"
|
217 |
+
# )
|
218 |
+
quant_config = BitsAndBytesConfig(
|
219 |
+
load_in_4bit=True,
|
220 |
+
bnb_4bit_compute_dtype=torch.float16,
|
221 |
+
bnb_4bit_quant_type="nf4",
|
222 |
+
)
|
223 |
+
|
224 |
+
# First try loading with device_map="auto"
|
225 |
+
try:
|
226 |
+
model = LlamaForCausalLM.from_pretrained(
|
227 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
228 |
+
# quantization_config=quant_config,
|
229 |
+
token=token,
|
230 |
+
torch_dtype=torch.float16,
|
231 |
+
device_map="auto",
|
232 |
+
low_cpu_mem_usage=True
|
233 |
+
)
|
234 |
+
except ImportError:
|
235 |
+
# Fallback to CPU-offloading if GPU memory is insufficient
|
236 |
+
with init_empty_weights():
|
237 |
+
model = LlamaForCausalLM.from_pretrained(
|
238 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
239 |
+
token=token,
|
240 |
+
torch_dtype=torch.float16
|
241 |
+
)
|
242 |
+
model = model.to(self.device)
|
243 |
+
|
244 |
+
# Freeze all parameters
|
245 |
+
for param in model.parameters():
|
246 |
+
param.requires_grad = False
|
247 |
+
|
248 |
+
return model.eval()
|
249 |
+
|
250 |
+
except Exception as e:
|
251 |
+
raise ImportError(
|
252 |
+
f"Failed to load LLaMA model. Please ensure:\n"
|
253 |
+
f"1. You have accepted the license at: https://huggingface.co/meta-llama/Llama-2-13b-chat-hf\n"
|
254 |
+
f"2. Your Hugging Face token is correct\n"
|
255 |
+
f"3. Required packages are installed: pip install accelerate bitsandbytes transformers\n"
|
256 |
+
f"Original error: {str(e)}"
|
257 |
+
)
|
258 |
+
|
259 |
+
def _init_alignment_projection(self):
|
260 |
+
"""Paper specifies Xavier initialization for alignment layer"""
|
261 |
+
nn.init.xavier_normal_(self.llama_proj.weight)
|
262 |
+
nn.init.constant_(self.llama_proj.bias, 0)
|
263 |
+
|
264 |
+
def _create_patches(self, x):
|
265 |
+
"""Convert image to patch embeddings following Eq. (1)"""
|
266 |
+
# x: (B, C, H, W)
|
267 |
+
x = x.to(self.dtype)
|
268 |
+
print(f"Shape of x : {x.shape}")
|
269 |
+
if x.dim() == 3:
|
270 |
+
x = x.unsqueeze(0) # Add batch dimension if missing
|
271 |
+
if x.dim() != 4:
|
272 |
+
raise ValueError(f"Input must be 4D tensor (got {x.dim()}D)")
|
273 |
+
|
274 |
+
B, C, H, W = x.shape
|
275 |
+
N = (H * W) // (self.P ** 2)
|
276 |
+
|
277 |
+
x = self.vit.patch_embed(x) # (B, N, D)
|
278 |
+
|
279 |
+
num_patches = x.shape[1]
|
280 |
+
pos_embed = self.vit.pos_embed[:, 1:num_patches + 1, :] # Adjust for exact match
|
281 |
+
x = x + pos_embed
|
282 |
+
|
283 |
+
# Add class token
|
284 |
+
class_token = self.vit.cls_token.expand(B, -1, -1)
|
285 |
+
x = torch.cat([class_token, x], dim=1) # (B, N+1, D)
|
286 |
+
print(f"Final output shape: {x.shape}")
|
287 |
+
return x
|
288 |
+
|
289 |
+
def forward_encoder(self, x):
|
290 |
+
"""ViT encoder from Eqs. (2)-(3)"""
|
291 |
+
# x: (B, N+1, D)
|
292 |
+
for blk in self.vit.blocks:
|
293 |
+
x = blk(x)
|
294 |
+
x = self.vit.norm(x)
|
295 |
+
x = self.ln_vision(x)
|
296 |
+
return x # (B, N+1, D)
|
297 |
+
|
298 |
+
def forward(self, images):
|
299 |
+
images = images.to(self.dtype)
|
300 |
+
# Convert images to patches
|
301 |
+
x = self._create_patches(images) # (B, N+1, D)
|
302 |
+
|
303 |
+
# ViT processing
|
304 |
+
x = x.to(self.dtype)
|
305 |
+
self.vit = self.vit.to(self.dtype)
|
306 |
+
vit_output = self.forward_encoder(x) # (B, N+1, D)
|
307 |
+
|
308 |
+
# Q-Former processing
|
309 |
+
query_tokens = self.query_tokens.expand(x.size(0), -1, -1).to(torch.float16)
|
310 |
+
qformer_output = self.q_former(
|
311 |
+
query_embeds=query_tokens,
|
312 |
+
encoder_hidden_states=vit_output.to(torch.float16),
|
313 |
+
encoder_attention_mask=torch.ones_like(vit_output[:, :, 0])
|
314 |
+
).to(self.dtype)
|
315 |
+
|
316 |
+
# Alignment projection
|
317 |
+
aligned_features = self.llama_proj(qformer_output.to(self.dtype))
|
318 |
+
|
319 |
+
return aligned_features
|
320 |
+
|
321 |
+
def add_to_history(self, role, content):
|
322 |
+
self.conversation_history.append({"role": role, "content": content})
|
323 |
+
|
324 |
+
def get_full_context(self):
|
325 |
+
return "\n".join([f"{msg['role']}: {msg['content']}" for msg in self.conversation_history])
|
326 |
+
|
327 |
+
def build_prompt(self, image_embeds, user_question=None):
|
328 |
+
# Base prompt for initial diagnosis
|
329 |
+
if not user_question:
|
330 |
+
prompt = (
|
331 |
+
"### Instruction: <Img ><Image ></Img> "
|
332 |
+
"Could you describe the skin disease in this image for me? "
|
333 |
+
"### Response:"
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
# Follow-up prompt with conversation history
|
337 |
+
history = self.get_full_context()
|
338 |
+
prompt = (
|
339 |
+
f"### Instruction: <Img ><Image ></Img> "
|
340 |
+
f"Based on our previous conversation:\n{history}\n"
|
341 |
+
f"User asks: {user_question}\n"
|
342 |
+
"### Response:"
|
343 |
+
)
|
344 |
+
|
345 |
+
return prompt
|
346 |
+
|
347 |
+
def generate(self, images, user_input=None, max_length=300):
|
348 |
+
# Get aligned features
|
349 |
+
images = images.to(self.dtype)
|
350 |
+
|
351 |
+
aligned_features = self.forward(images)
|
352 |
+
|
353 |
+
prompt = self.build_prompt(aligned_features, user_input)
|
354 |
+
|
355 |
+
self.llama = self.llama.to(self.dtype)
|
356 |
+
|
357 |
+
# Tokenize prompt
|
358 |
+
|
359 |
+
self.tokenizer.add_special_tokens({'additional_special_tokens': ['<ImageHere>']})
|
360 |
+
self.llama.resize_token_embeddings(len(self.tokenizer))
|
361 |
+
|
362 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(images.device)
|
363 |
+
|
364 |
+
# Replace <ImageHere> with aligned features
|
365 |
+
image_embeddings = self.llama.model.embed_tokens(inputs.input_ids)
|
366 |
+
image_token_index = torch.where(inputs.input_ids == self.tokenizer.convert_tokens_to_ids("<ImageHere>"))
|
367 |
+
image_embeddings[image_token_index] = aligned_features.mean(dim=1) # Pool query tokens
|
368 |
+
|
369 |
+
# Generate response
|
370 |
+
outputs = self.llama.generate(
|
371 |
+
inputs_embeds=image_embeddings,
|
372 |
+
max_length=max_length,
|
373 |
+
temperature=0.7,
|
374 |
+
top_p=0.9,
|
375 |
+
do_sample=True
|
376 |
+
)
|
377 |
+
|
378 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
379 |
+
|
380 |
+
|
381 |
+
def load_model(model_path):
|
382 |
+
model = SkinGPT4(vit_checkpoint_path="dermnet_finetuned_version1.pth")
|
383 |
+
model.to(device)
|
384 |
+
model.eval()
|
385 |
+
return model
|
386 |
+
|
387 |
+
|
388 |
+
|
389 |
+
class SkinGPTClassifier:
|
390 |
+
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
391 |
+
self.device = torch.device(device)
|
392 |
+
self.conversation_history = []
|
393 |
+
# Initialize models (they'll be loaded when needed)
|
394 |
+
self.base_models = None
|
395 |
+
self.meta_model = None
|
396 |
+
self.resnet_feature_extractor = None
|
397 |
+
|
398 |
+
# Image transformations
|
399 |
+
self.transform = transforms.Compose([
|
400 |
+
transforms.Resize((224, 224)),
|
401 |
+
transforms.ToTensor(),
|
402 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
403 |
+
])
|
404 |
+
|
405 |
+
def load_models(self):
|
406 |
+
|
407 |
+
self.meta_model = SkinGPT4(vit_checkpoint_path="dermnet_finetuned_version1.pth")
|
408 |
+
self.meta_model.to_empty(device=device)
|
409 |
+
|
410 |
+
def predict(self, image, top_k=3):
|
411 |
+
"""Make prediction for a single image"""
|
412 |
+
if self.meta_model is None:
|
413 |
+
self.load_models()
|
414 |
+
|
415 |
+
# Load and preprocess image
|
416 |
+
try:
|
417 |
+
# image = Image.open(image_path).convert('RGB')
|
418 |
+
image = image.convert('RGB')
|
419 |
+
except:
|
420 |
+
raise ValueError("Could not load image from path")
|
421 |
+
|
422 |
+
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
423 |
+
diagnosis = self.meta_model.generate(
|
424 |
+
image_tensor
|
425 |
+
)
|
426 |
+
|
427 |
+
return {
|
428 |
+
"top_predictions": diagnosis,
|
429 |
+
}
|
430 |
+
|
431 |
+
classifier = SkinGPTClassifier()
|
432 |
+
|
433 |
+
|
434 |
+
# === Session Init ===
|
435 |
+
if "messages" not in st.session_state:
|
436 |
+
st.session_state.messages = []
|
437 |
+
|
438 |
+
# === Image Processing Function ===
|
439 |
+
def run_inference(image):
|
440 |
+
result = classifier.predict(image, top_k=1)
|
441 |
+
|
442 |
+
return result
|
443 |
+
|
444 |
+
# === PDF Export ===
|
445 |
+
def export_chat_to_pdf(messages):
|
446 |
+
pdf = FPDF()
|
447 |
+
pdf.add_page()
|
448 |
+
pdf.set_font("Arial", size=12)
|
449 |
+
for msg in messages:
|
450 |
+
role = "You" if msg["role"] == "user" else "AI"
|
451 |
+
pdf.multi_cell(0, 10, f"{role}: {msg['content']}\n")
|
452 |
+
buf = io.BytesIO()
|
453 |
+
pdf.output(buf)
|
454 |
+
buf.seek(0)
|
455 |
+
return buf
|
456 |
+
|
457 |
+
# === App UI ===
|
458 |
+
|
459 |
+
st.title("𧬠DermBOT β Skin AI Assistant")
|
460 |
+
st.caption(f"π§ Using model: SkinGPT")
|
461 |
+
uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"])
|
462 |
+
if "conversation" not in st.session_state:
|
463 |
+
st.session_state.conversation = []
|
464 |
+
if uploaded_file:
|
465 |
+
st.image(uploaded_file, caption="Uploaded image", use_column_width=True)
|
466 |
+
image = Image.open(uploaded_file).convert("RGB")
|
467 |
+
if not st.session_state.conversation:
|
468 |
+
# First message - diagnosis
|
469 |
+
diagnosis = classifier.predict(image, top_k=1)
|
470 |
+
st.session_state.conversation.append(("assistant", diagnosis))
|
471 |
+
with st.chat_message("assistant"):
|
472 |
+
st.markdown(diagnosis)
|
473 |
+
else:
|
474 |
+
# Follow-up questions
|
475 |
+
if user_query := st.chat_input("Ask a follow-up question..."):
|
476 |
+
st.session_state.conversation.append(("user", user_query))
|
477 |
+
with st.chat_message("user"):
|
478 |
+
st.markdown(user_query)
|
479 |
+
|
480 |
+
# Generate response with context
|
481 |
+
context = "\n".join([f"{role}: {msg}" for role, msg in st.session_state.conversation])
|
482 |
+
response = classifier.generate(image, user_input=context)
|
483 |
+
|
484 |
+
st.session_state.conversation.append(("assistant", response))
|
485 |
+
with st.chat_message("assistant"):
|
486 |
+
st.markdown(response)
|
487 |
+
|
488 |
+
# === PDF Button ===
|
489 |
+
if st.button("π Download Chat as PDF"):
|
490 |
+
pdf_file = export_chat_to_pdf(st.session_state.messages)
|
491 |
+
st.download_button("Download PDF", data=pdf_file, file_name="chat_history.pdf", mime="application/pdf")
|