Spaces:
Sleeping
Sleeping
Initial commit
Browse files- evo_vit.py +114 -0
evo_vit.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
2024-11-10 15:29:50
|
3 |
+
"""
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
from torch.autograd import Variable
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.backends.cudnn as cudnn
|
11 |
+
import torch.optim as optim
|
12 |
+
from datetime import datetime
|
13 |
+
import multiprocessing
|
14 |
+
from transformers import ViTModel, ViTConfig
|
15 |
+
from sklearn.metrics import f1_score
|
16 |
+
from sklearn.model_selection import KFold
|
17 |
+
import numpy as np
|
18 |
+
from collections import Counter
|
19 |
+
from torch.optim.lr_scheduler import StepLR
|
20 |
+
from PIL import Image
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
|
24 |
+
class PatchEmbedding(nn.Module):
|
25 |
+
def __init__(self, img_size, patch_size, in_channels, embed_dim, hidden_dim):
|
26 |
+
super(PatchEmbedding, self).__init__()
|
27 |
+
# self.patch_embed = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
28 |
+
self.patch_embed = nn.Conv2d(in_channels, hidden_dim, kernel_size=patch_size, stride=patch_size)
|
29 |
+
self.num_patches = (img_size // patch_size) ** 2
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = self.patch_embed(x).flatten(2).transpose(1, 2) # (batch_size, num_patches, embed_dim)
|
33 |
+
return x
|
34 |
+
|
35 |
+
class PositionalEncoding(nn.Module):
|
36 |
+
def __init__(self, num_patches, embed_dim, hidden_dim):
|
37 |
+
super(PositionalEncoding, self).__init__()
|
38 |
+
self.positional_encoding = nn.Parameter(torch.randn(1, num_patches, hidden_dim))
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
return x + self.positional_encoding
|
42 |
+
|
43 |
+
|
44 |
+
class TransformerLayer(nn.Module):
|
45 |
+
def __init__(self, hidden_dim, num_heads, mlp_dim, dropout_rate):
|
46 |
+
super(TransformerLayer, self).__init__()
|
47 |
+
self.attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=dropout_rate)
|
48 |
+
self.mlp = nn.Sequential(
|
49 |
+
nn.Linear(hidden_dim, mlp_dim),
|
50 |
+
nn.GELU(),
|
51 |
+
nn.Dropout(dropout_rate),
|
52 |
+
nn.Linear(mlp_dim, hidden_dim),
|
53 |
+
nn.Dropout(dropout_rate)
|
54 |
+
)
|
55 |
+
self.norm1 = nn.LayerNorm(hidden_dim)
|
56 |
+
self.norm2 = nn.LayerNorm(hidden_dim)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
attn_out, _ = self.attention(x, x, x)
|
60 |
+
x = self.norm1(x + attn_out)
|
61 |
+
x = self.norm2(x + self.mlp(x))
|
62 |
+
return x
|
63 |
+
|
64 |
+
# EvoViTModel class for building Vision Transformer model
|
65 |
+
class EvoViTModel(nn.Module):
|
66 |
+
def __init__(self, img_size, patch_size, in_channels, embed_dim, num_classes, hidden_dim):
|
67 |
+
super(EvoViTModel, self).__init__()
|
68 |
+
|
69 |
+
self.patch_embed = PatchEmbedding(img_size, patch_size, in_channels, embed_dim, hidden_dim)
|
70 |
+
self.position_encoding = PositionalEncoding(self.patch_embed.num_patches, embed_dim, hidden_dim)
|
71 |
+
self.sigmoid = nn.Sigmoid()
|
72 |
+
# Placeholder for dynamically generated init:
|
73 |
+
# Transformer Layer Initialization
|
74 |
+
self.transformer_layer_0 = TransformerLayer(num_heads=8, mlp_dim=2048, hidden_dim=512, dropout_rate=0.20362387412323335)
|
75 |
+
self.transformer_layer_1 = TransformerLayer(num_heads=8, mlp_dim=3072, hidden_dim=512, dropout_rate=0.29859399476669696)
|
76 |
+
self.transformer_layer_2 = TransformerLayer(num_heads=16, mlp_dim=4096, hidden_dim=512, dropout_rate=0.24029622136332746)
|
77 |
+
self.transformer_layer_3 = TransformerLayer(num_heads=8, mlp_dim=2048, hidden_dim=512, dropout_rate=0.22640265738407994)
|
78 |
+
self.transformer_layer_4 = TransformerLayer(num_heads=16, mlp_dim=3072, hidden_dim=512, dropout_rate=0.2969787366320388)
|
79 |
+
self.transformer_layer_5 = TransformerLayer(num_heads=16, mlp_dim=2048, hidden_dim=512, dropout_rate=0.11264741089870321)
|
80 |
+
self.transformer_layer_6 = TransformerLayer(num_heads=8, mlp_dim=4096, hidden_dim=512, dropout_rate=0.25324312813345734)
|
81 |
+
self.transformer_layer_7 = TransformerLayer(num_heads=8, mlp_dim=2048, hidden_dim=512, dropout_rate=0.17729069086242882)
|
82 |
+
self.transformer_layer_8 = TransformerLayer(num_heads=8, mlp_dim=2048, hidden_dim=512, dropout_rate=0.2531553780827078)
|
83 |
+
self.transformer_layer_9 = TransformerLayer(num_heads=16, mlp_dim=2048, hidden_dim=512, dropout_rate=0.17372554665581236)
|
84 |
+
self.transformer_layer_10 = TransformerLayer(num_heads=16, mlp_dim=3072, hidden_dim=512, dropout_rate=0.25217233180956183)
|
85 |
+
self.transformer_layer_11 = TransformerLayer(num_heads=8, mlp_dim=4096, hidden_dim=512, dropout_rate=0.24459590331387862)
|
86 |
+
self.transformer_layer_12 = TransformerLayer(num_heads=8, mlp_dim=2048, hidden_dim=512, dropout_rate=0.17589263405869232)
|
87 |
+
self.classifier = nn.Linear(512, 48)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
expected_dtype = self.patch_embed.patch_embed .weight.dtype
|
91 |
+
if x.dtype != expected_dtype:
|
92 |
+
x = x.to(expected_dtype)
|
93 |
+
|
94 |
+
x = self.patch_embed(x)
|
95 |
+
x = self.position_encoding(x)
|
96 |
+
# Pass through additional transformer layers
|
97 |
+
# Placeholder for dynamically generated forward pass:
|
98 |
+
x = self.transformer_layer_0(x)
|
99 |
+
x = self.transformer_layer_1(x)
|
100 |
+
x = self.transformer_layer_2(x)
|
101 |
+
x = self.transformer_layer_3(x)
|
102 |
+
x = self.transformer_layer_4(x)
|
103 |
+
x = self.transformer_layer_5(x)
|
104 |
+
x = self.transformer_layer_6(x)
|
105 |
+
x = self.transformer_layer_7(x)
|
106 |
+
x = self.transformer_layer_8(x)
|
107 |
+
x = self.transformer_layer_9(x)
|
108 |
+
x = self.transformer_layer_10(x)
|
109 |
+
x = self.transformer_layer_11(x)
|
110 |
+
x = self.transformer_layer_12(x)
|
111 |
+
x = self.classifier(x[:, 0])
|
112 |
+
#probs = self.sigmoid(x)
|
113 |
+
#return probs
|
114 |
+
return x
|