File size: 7,559 Bytes
dc9062b
79cab30
 
 
 
 
 
 
dc9062b
79cab30
 
dc9062b
 
 
 
79cab30
dc9062b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cab30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9062b
79cab30
dc9062b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cab30
 
 
 
 
dc9062b
79cab30
 
 
 
dc9062b
 
 
 
 
 
 
154407c
dc9062b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from langchain_qdrant import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings
from transformers import pipeline
import os
import torch
from groq import Groq
import google.generativeai as genai
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
import cohere

available_models = ["OpenAI GPT-4o", "LLaMA 3", "Gemini Pro", "Ensemble"]
AI_PROMPT_TEMPLATE = """You are an AI-assisted Dermatology Chatbot, specializing in diagnosing and educating users about skin diseases.
    You provide accurate, compassionate, and detailed explanations while using correct medical terminology.

    Guidelines:
    1. Symptoms - Explain in simple terms with proper medical definitions.
    2. Causes - Include genetic, environmental, and lifestyle-related risk factors.
    3. Medications & Treatments - Provide common prescription and over-the-counter treatments.
    4. Warnings & Emergencies - Always recommend consulting a licensed dermatologist.
    5. Emergency Note - If symptoms worsen or include difficulty breathing, **advise calling 911 immediately.

    Query: {question}
    Relevant Information: {context}
    Answer:
    """


@st.cache_resource(show_spinner=False)
def initialize_rag_components():
    components = {
        'cohere_client': cohere.Client(st.secrets["COHERE_API_KEY"]),
        'pair_ranker': pipeline("text-classification",
                            model="llm-blender/PairRM",
                            tokenizer="llm-blender/PairRM",
                            return_all_scores=True
                        ),
        'gen_fuser': pipeline("text-generation",
                        model="llm-blender/gen_fuser_3b",
                        tokenizer="llm-blender/gen_fuser_3b",
                        max_length=2048,
                        do_sample=False
                    ),
        'retriever': get_retriever()
    }
    return components

class AllModelsWrapper:
    def invoke(self, messages):
        prompt = messages[0]["content"]
        rag_components = st.session_state.app_models['rag_components']  # Get components
        responses = get_all_responses(prompt)
        fused = rank_and_fuse(prompt, responses, rag_components)
        return type('obj', (object,), {'content': fused})()

def get_all_responses(prompt):
    # Get responses from all models
    openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2,
                             api_key=st.secrets["OPENAI_API_KEY"]).invoke(
        [{"role": "user", "content": prompt}]).content

    gemini = genai.GenerativeModel("gemini-2.5-pro-exp-03-25")
    gemini_resp = gemini.generate_content(prompt).text

    llama = Groq(api_key=st.secrets["GROQ_API_KEY"])
    llama_resp = llama.chat.completions.create(
        model="meta-llama/llama-4-maverick-17b-128e-instruct",
        messages=[{"role": "user", "content": prompt}],
        temperature=1, max_completion_tokens=1024, top_p=1, stream=False
    ).choices[0].message.content

    return [openai_resp, gemini_resp, llama_resp]


def rank_and_fuse(prompt, responses, rag_components):
    ranked = [(resp, rag_components['pair_ranker'](f"{prompt}\n\n{resp}")[0][1]['score'])
              for resp in responses]
    ranked.sort(key=lambda x: x[1], reverse=True)

    # Fuse top responses
    fusion_input = "\n\n".join([f"[Answer {i + 1}]: {ans}" for i, (ans, _) in enumerate(ranked[:2])])
    return rag_components['gen_fuser'](f"Fuse these responses:\n{fusion_input}",
                     return_full_text=False)[0]['generated_text']


def get_retriever():
    # === Qdrant DB Setup ===
    qdrant_client = QdrantClient(
        url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
        api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
    )
    collection_name = "ks_collection_1.5BE"

    model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct", trust_remote_code=True)


    local_embedding = HuggingFaceEmbeddings(
        model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
        model_kwargs={"trust_remote_code": True, "device": "cuda" if torch.cuda.is_available() else "cpu"}
    )
    print(" Qwen2-1.5B local embedding model loaded.")

    vector_store = Qdrant(
        client=qdrant_client,
        collection_name=collection_name,
        embeddings=local_embedding
    )
    return vector_store.as_retriever()

def initialize_llm(_model_name):
    """Initialize the LLM based on selection"""
    print(f"Model name : {_model_name}")
    if "OpenAI" in _model_name:
        return ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"])
    elif "LLaMA" in _model_name:
        client = Groq(api_key=st.secrets["GROQ_API_KEY"])
        def get_llama_response(prompt):
            completion = client.chat.completions.create(
                model="meta-llama/llama-4-maverick-17b-128e-instruct",
                messages=[{"role": "user", "content": prompt}],
                temperature=1,
                max_completion_tokens=1024,
                top_p=1,
                stream=False
            )
            return completion.choices[0].message.content
        return type('obj', (object,), {'invoke': lambda self, x: get_llama_response(x[0]["content"])})()

    elif "Gemini" in _model_name:
        genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
        gemini_model = genai.GenerativeModel("gemini-2.5-pro-exp-03-25")
        def get_gemini_response(prompt):
            response = gemini_model.generate_content(prompt)
            return response.text
        return type('obj', (object,), {'invoke': lambda self, x: get_gemini_response(x[0]["content"])})()

    elif "Ensemble" in _model_name:
        return AllModelsWrapper()
    else:
        raise ValueError("Unsupported model selected")


def load_rag_chain(llm):

    prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])

    rag_chain = RetrievalQA.from_chain_type(
        llm=llm,
        retriever=get_retriever(),
        chain_type="stuff",
        chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
    )

    return rag_chain

def rerank_with_cohere(query, documents, co, top_n=5):
    if not documents:
        return []
    raw_texts = [doc.page_content for doc in documents]
    results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
    return [documents[result.index] for result in results.results]


def get_reranked_response(query, llm, rag_components):
    """Get response with reranking"""
    docs = rag_components['retriever'].get_relevant_documents(query)
    reranked_docs = rerank_with_cohere(query, docs, rag_components['cohere_client'])
    context = "\n\n".join([doc.page_content for doc in reranked_docs])

    if isinstance(llm, (ChatOpenAI, AllModelsWrapper)):
        return load_rag_chain(llm).invoke({"query": query, "context": context})['result']
    else:
        prompt = AI_PROMPT_TEMPLATE.format(question=query, context=context)
        return llm.invoke([{"role": "user", "content": prompt}]).content


if __name__ == "__main__":
    print("This is a module - import it instead of running directly")