Spaces:
Sleeping
Sleeping
File size: 13,700 Bytes
79cab30 fd5144d 79cab30 87c2216 79cab30 87c2216 a3f66c1 87c2216 a3f66c1 c540b50 a3f66c1 c540b50 87c2216 79cab30 87c2216 fd5144d 87c2216 79cab30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import torch.nn.functional as F
from evo_vit import EvoViTModel
import io
import os
from fpdf import FPDF
from torchvision.models import resnet50
import nest_asyncio
from huggingface_hub import hf_hub_download
device='cuda' if torch.cuda.is_available() else 'cpu'
def load_model(repo_id, filename):
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
)
model = EvoViTModel(img_size=224, patch_size=16, in_channels=3, embed_dim=768, num_classes=2, hidden_dim=512)
model.classifier = nn.Linear(512, 1)
state_dict = torch.load(model_path, map_location=device)
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith("backbone."):
new_key = key[len("backbone."):]
else:
new_key = key
new_state_dict[new_key] = value
if "classifier.weight" in new_state_dict:
original_weight = new_state_dict["classifier.weight"]
new_state_dict["classifier.weight"] = original_weight[0:1, :]
if "classifier.bias" in new_state_dict:
original_bias = new_state_dict["classifier.bias"]
new_state_dict["classifier.bias"] = original_bias[0:1]
model.load_state_dict(new_state_dict, strict=False)
model.to(device)
model.eval()
return model
def load_binary_models():
base_models = []
class_models_mapping = {
"Acne and Rosacea Photos": 'santhosh/10fold_model_acne.pth',
"Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions": 'santhosh/5fold_model_actinic.pth',
"Atopic Dermatitis Photos": 'keerthi/Atopic/best_global_model_5fold.pth',
"Bullous Disease Photos": 'santhosh/10fold_model_bullous.pth',
"Cellulitis Impetigo and other Bacterial Infections": 'santhosh/10fold_model_cellulitis.pth',
"Eczema Photos": 'santhosh/5fold_model_eczema.pth',
"ExanthemsandDrugEruptions": 'santhosh/10fold_model_exantherms.pth',
"Hair Loss Photos Alopecia and other Hair Diseases": 'keerthi/HairLoss/best_global_model_5fold.pth',
"Herpes HPV and other STDs Photos": 'keerthi/Herpes/best_global_model_5fold.pth',
"Light Diseases and Disorders of Pigmentation": 'santhosh/5fold_model_light.pth',
"Lupus and other Connective Tissue diseases": 'keerthi/Lupus/best_global_model_5fold.pth',
"Melanoma Skin Cancer Nevi and Moles": 'keerthi/Melanoma/best_global_model_10fold.pth',
"Nail Fungus and other Nail Disease": 'santhosh/5fold_model_nail.pth',
"Poison Ivy Photos and other Contact Dermatitis": 'santhosh/5fold_model_poison.pth',
"Psoriasis pictures Lichen Planus and related diseases": 'santhosh/10fold_model_psoriasis.pth',
"Scabies Lyme Disease and other Infestations and Bites": 'santhosh/5fold_model_scabies.pth',
"Seborrheic Keratoses and other Benign Tumors": 'santhosh/10fold_model_seboh.pth',
"Systemic Disease": 'keerthi/Systemic/best_global_model_5fold.pth',
"Tinea Ringworm Candidiasis and other Fungal Infections": 'santhosh/10fold_model_tinea.pth',
"Urticaria Hives": 'keerthi/Urticaria/best_global_model_10fold.pth',
"Vascular Tumors": 'keerthi/Vascular/best_global_model_5fold.pth',
"Vasculitis Photos": 'keerthi/Vasculitis/best_global_model_10fold.pth',
"Warts Molluscum and other Viral Infections": 'santhosh/10fold_model_warts.pth'
}
repo_id = "KeerthiVM/SkinCancerDiagnosis" # Your Hugging Face repo
for class_name, filename in class_models_mapping.items():
# model_path = os.path.join("best_models_overall", rel_path)
model = load_model(repo_id, filename)
base_models.append(model)
return base_models
class DynamicCNN(nn.Module):
def __init__(self, input_channels, fc_layers, num_classes, dropout_rate=0.3):
super(DynamicCNN, self).__init__()
fc_layers_list = []
in_dim = input_channels
for fc_dim in fc_layers:
fc_layers_list.append(nn.Linear(in_dim, fc_dim))
fc_layers_list.append(nn.BatchNorm1d(fc_dim))
fc_layers_list.append(nn.ReLU())
fc_layers_list.append(nn.Dropout(dropout_rate))
in_dim = fc_dim
fc_layers_list.append(nn.Linear(in_dim, num_classes))
self.fc = nn.Sequential(*fc_layers_list)
def forward(self, x):
x = self.fc(x)
return x
class SkinDiseaseClassifier:
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
self.device = torch.device(device)
self.class_names = [
"Acne and Rosacea Photos",
"Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions",
"Atopic Dermatitis Photos",
"Bullous Disease Photos",
"Cellulitis Impetigo and other Bacterial Infections",
"Eczema Photos",
"ExanthemsandDrugEruptions",
"Hair Loss Photos Alopecia and other Hair Diseases",
"Herpes HPV and other STDs Photos",
"Light Diseases and Disorders of Pigmentation",
"Lupus and other Connective Tissue diseases",
"Melanoma Skin Cancer Nevi and Moles",
"Nail Fungus and other Nail Disease",
"Poison Ivy Photos and other Contact Dermatitis",
"Psoriasis pictures Lichen Planus and related diseases",
"Scabies Lyme Disease and other Infestations and Bites",
"Seborrheic Keratoses and other Benign Tumors",
"Systemic Disease",
"Tinea Ringworm Candidiasis and other Fungal Infections",
"Urticaria Hives",
"Vascular Tumors",
"Vasculitis Photos",
"Warts Molluscum and other Viral Infections"
]
# Initialize models (they'll be loaded when needed)
self.base_models = None
self.meta_model = None
self.resnet_feature_extractor = None
self.skincon_model = None
# Image transformations
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.multilabel_class_names = [
"Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
"Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
"Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
"Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
"Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
"Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
"Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]
def load_models(self):
"""Load all required models"""
# Load binary models
self.base_models = load_binary_models()
for model in self.base_models:
model.to(self.device)
model.eval()
# Load ResNet feature extractor
model = resnet50(pretrained=True)
layers = [model.layer1, model.layer2, model.layer3, model.layer4]
self.resnet_feature_extractor = nn.Sequential(
model.conv1, model.bn1, model.relu, model.maxpool, *layers
)
self.resnet_feature_extractor.to(self.device)
self.resnet_feature_extractor.eval()
# Load meta model
print("=== Loading model with weights_only=False ===")
meta_model_path = hf_hub_download(
repo_id="KeerthiVM/SkinCancerDiagnosis",
filename="best_meta_model_two_layer_version4.pth"
)
checkpoint = torch.load(meta_model_path, map_location=self.device, weights_only=False)
correct_input_size = checkpoint['state_dict']['fc.0.weight'].shape[1]
input_size = 23 + 4 + 7168 # Adjust based on your actual feature size
fc_layers = [1024, 512, 256] # Use whatever was in your best model
self.meta_model = DynamicCNN(
input_channels=correct_input_size,
fc_layers=fc_layers,
num_classes=23,
dropout_rate=0.5
)
self.meta_model.load_state_dict(checkpoint['state_dict'])
self.meta_model.to(self.device)
self.meta_model.eval()
skincon_path = hf_hub_download(
repo_id="KeerthiVM/SkinCancerDiagnosis",
filename="skincon.pth"
)
self.skincon_model = EvoViTModel(img_size=224, patch_size=16, in_channels=3, embed_dim=768, num_classes=48, hidden_dim=512)
# self.skincon_model = load_model("KeerthiVM/SkinCancerDiagnosis", "skincon.pth")
# self.skincon_model.classifier = nn.Linear(512, 48)
# self.skincon_model = EvoViTModel(img_size=224, patch_size=16, in_channels=3, embed_dim=768, num_classes=48,
# hidden_dim=512)
state_dict = torch.load(skincon_path, map_location=device)
self.skincon_model.load_state_dict(state_dict, strict=False)
# self.skincon_model.eval()
def extract_image_features(self, image_tensor):
"""Extract features using ResNet"""
with torch.no_grad():
features = []
x = image_tensor
for layer in self.resnet_feature_extractor.children():
x = layer(x)
if isinstance(layer, nn.Sequential): # For residual blocks
# features.append(F.adaptive_avg_pool2d(x, (1, 1)).flatten(1))
# features = torch.cat(features, dim=1)
pooled = F.adaptive_avg_pool2d(x, (1, 1)).flatten(1)
features.append(pooled)
features = torch.cat(features, dim=1)
return features.cpu().numpy()
def predict(self, image, top_k=3):
"""Make prediction for a single image"""
if self.base_models is None or self.meta_model is None:
raise RuntimeError("Models not loaded - call load_models() first")
# Load and preprocess image
try:
image = image.convert('RGB')
except:
raise ValueError("Could not load image from path")
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
# Extract features
with torch.no_grad():
# Get probabilities from each binary model
binary_probs = []
for model in self.base_models:
outputs = model(image_tensor)
probs = torch.sigmoid(outputs).squeeze(1)
binary_probs.append(probs)
binary_features = torch.stack(binary_probs, dim=1)
# Get image features
image_features = self.extract_image_features(image_tensor)
image_features = torch.from_numpy(image_features).float().to(self.device)
# Calculate probability statistics
top3_probs = torch.topk(binary_features, 3, dim=1).values
prob_stats = torch.stack([
binary_features.mean(dim=1, keepdim=True),
binary_features.std(dim=1, keepdim=True),
top3_probs.mean(dim=1, keepdim=True),
(top3_probs[:, 0] - top3_probs[:, 2]).unsqueeze(1) # Confidence gap
], dim=1).squeeze(-1)
# Combine all features
combined_features = torch.cat([
binary_features,
image_features,
prob_stats
], dim=1)
# Make prediction with meta-model
with torch.no_grad():
outputs = self.meta_model(combined_features)
probabilities = torch.softmax(outputs, dim=1).squeeze().cpu().numpy()
# Get top predictions
top_indices = np.argsort(probabilities)[-top_k:][::-1]
top_predictions = [
(self.class_names[i], float(probabilities[i]))
for i in top_indices
]
return {
"top_predictions": top_predictions,
"all_probabilities": {name: float(prob) for name, prob in zip(self.class_names, probabilities)}
}
def predict_skincon(self, image, top_k=3):
"""Make prediction for a single image"""
if self.base_models is None or self.skincon_model is None:
raise RuntimeError("Models not loaded - call load_models() first")
self.skincon_model.eval()
try:
image = image.convert('RGB')
except:
raise ValueError("Could not load image from path")
image_tensor = self.transform(image).unsqueeze(0).to(self.device)
with torch.no_grad():
output_multi = self.skincon_model(image_tensor)
probs_multi = torch.sigmoid(output_multi).squeeze().numpy()
print(f"Probabilities : {probs_multi}")
threshold = 0.5
predicted_labels_multi = [self.multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > threshold]
print("Predicted labels multi : ",predicted_labels_multi)
return predicted_labels_multi
def initialize_classifier():
print("⚙️ Initializing skin disease classifier...")
classifier = SkinDiseaseClassifier()
classifier.load_models()
dummy_img = Image.new('RGB', (224, 224))
classifier.predict(dummy_img)
print("⚙️ Initialization successful")
return classifier |