{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "71299281", "metadata": {}, "outputs": [], "source": [ "from fastai.vision.all import *\n", "import gradio as gr\n", "import skimage" ] }, { "cell_type": "code", "execution_count": 3, "id": "7d256402", "metadata": {}, "outputs": [], "source": [ "# Function needed to set labels\n", "def is_cat(filename):\n", " return filename.name[0].isupper() " ] }, { "cell_type": "code", "execution_count": 4, "id": "a350f960", "metadata": {}, "outputs": [], "source": [ "learn = load_learner('cat_dog_model.pkl')\n", "labels = learn.dls.vocab\n", "\n", "def predict(img):\n", " img = PILImage.create(img)\n", " pred, pred_idx, probs = learn.predict(img)\n", " return {labels[i]: float(probs[i]) for i in range(len(labels))}" ] }, { "cell_type": "code", "execution_count": 5, "id": "8703a184", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(, 'http://127.0.0.1:7860/', None)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "title = \"Cat/Dog Classifier\"\n", "description = \"Basic Cat/Dog classifier trained on the Oxford Pets dataset with fastai. Testing out Gradio on HF Spaces.\"\n", "examples = ['siamese.jpg', 'boerboel.jpg', 'german_shepherd.jpg', 'sphynx.jpg']\n", "enable_queue=True\n", "\n", "gr.Interface(\n", " fn=predict, \n", " inputs=gr.Image(shape=(512,512)),\n", " outputs=gr.Label(num_top_classes=3),\n", " title=title,\n", " description=description,\n", " examples=examples,\n", ").launch(enable_queue=enable_queue)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.6 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "ed0e91aaffcefde6eb9bcd4f55fe7652d77471dc031ce772257aa5eb4a54e8f2" } } }, "nbformat": 4, "nbformat_minor": 5 }