Kaushik066 commited on
Commit
60728e8
·
verified ·
1 Parent(s): a7d002d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -35
app.py CHANGED
@@ -1,54 +1,67 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
  minimum=0.1,
54
  maximum=1.0,
 
1
+ # generic libraries
2
  import gradio as gr
3
+ import os
4
 
5
+ # for embeddings and indexing
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from langchain.vectorstores import FAISS
8
+
9
+ # for data retrieval
10
+ from langchain.chains import RetrievalQA
11
+
12
+ # for huggingface llms
13
+ from langchain_community.llms import HuggingFaceHub
14
+
15
+ # define constants
16
+ EMB_MODEL1 = 'BAAI/bge-base-en-v1.5'
17
+ MISTRAL_MODEL1 = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
18
+ HF_MODEL1 = 'HuggingFaceH4/zephyr-7b-beta'
19
+ # define paths
20
+ vector_path = 'faiss_index'
21
+
22
+ # Initialize your embedding model
23
+ embedding_model = HuggingFaceEmbeddings(model_name=EMB_MODEL1)
24
+
25
+ # Load FAISS from relative path
26
+ if os.path.exists("faiss_index"):
27
+ vectordb = FAISS.load_local(vector_path, embedding_model)
28
+ else:
29
+ raise FileNotFoundError("FAISS index not found in Space. Please upload it to faiss_index/")
30
 
31
 
32
  def respond(
33
  message,
34
+ #history: list[tuple[str, str]],
35
+ #system_message,
36
  max_tokens,
37
  temperature,
38
  top_p,
39
+ vectordb,
40
+ embedding_model):
 
 
 
 
 
 
 
 
 
 
41
 
42
+ # define retriever object
43
+ retriever = vectordb.as_retriever(search_type="similarity", search_kwargs={"k": top_p})
 
 
 
 
 
 
44
 
45
+ # initialse chatbot llm
46
+ llm = HuggingFaceHub(
47
+ repo_id=MISTRAL_MODEL1,
48
+ token=os.environ["HUGGINGFACEHUB_API_TOKEN"], #huggingfacehub_api_token=SECRET_TOKEN_HF,
49
+ model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens}
50
+ )
51
+ # create a RAG pipeline
52
+ qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
53
+ #generate results
54
+ result = qa_chain.invoke(query)
55
+
56
+ yield result['result']
57
 
58
 
 
 
 
59
  demo = gr.ChatInterface(
60
  respond,
61
  additional_inputs=[
62
+ #gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
63
+ gr.Slider(minimum=128, maximum=1024, value=512, step=128, label="Max new tokens"),
64
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
65
  gr.Slider(
66
  minimum=0.1,
67
  maximum=1.0,