Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,2 @@
|
|
1 |
-
import torch
|
2 |
-
import soundfile as sf
|
3 |
-
import numpy as np
|
4 |
-
import gradio as gr
|
5 |
-
from transformers import VitsModel, MBartForConditionalGeneration, AutoTokenizer, pipeline
|
6 |
|
7 |
-
# Load the models and tokenizers
|
8 |
-
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
9 |
-
translation_tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", use_fast=False)
|
10 |
-
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
|
11 |
-
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
12 |
-
tts_model = VitsModel.from_pretrained("facebook/mms-tts-hin")
|
13 |
-
|
14 |
-
def process_audio(audio):
|
15 |
-
if audio is None:
|
16 |
-
return "No audio provided.", None
|
17 |
-
|
18 |
-
sr, y = audio
|
19 |
-
y = y.astype(np.float32)
|
20 |
-
y /= np.max(np.abs(y))
|
21 |
-
|
22 |
-
# Transcribe the audio
|
23 |
-
transcription = transcriber({"sampling_rate": sr, "raw": y})["text"]
|
24 |
-
|
25 |
-
# Translate from English to Hindi
|
26 |
-
model_inputs = translation_tokenizer(transcription, return_tensors="pt", padding=True, truncation=True)
|
27 |
-
generated_tokens = translation_model.generate(
|
28 |
-
**model_inputs,
|
29 |
-
forced_bos_token_id=translation_tokenizer.lang_code_to_id["hi_IN"]
|
30 |
-
)
|
31 |
-
translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
32 |
-
|
33 |
-
# Generate Hindi speech from translated text
|
34 |
-
tts_inputs = tts_tokenizer(translated_text, return_tensors="pt")
|
35 |
-
try:
|
36 |
-
with torch.no_grad():
|
37 |
-
tts_output = tts_model(**tts_inputs)
|
38 |
-
waveform = tts_output.waveform.squeeze().cpu().numpy()
|
39 |
-
except RuntimeError as e:
|
40 |
-
return f"Runtime Error: {e}", None
|
41 |
-
|
42 |
-
# Save the waveform to an audio file
|
43 |
-
audio_path = 'output.wav'
|
44 |
-
sf.write(audio_path, waveform, 22050)
|
45 |
-
|
46 |
-
return audio_path
|
47 |
-
|
48 |
-
# Create the Gradio interface
|
49 |
-
demo = gr.Interface(
|
50 |
-
fn=process_audio,
|
51 |
-
inputs=gr.Audio(sources=["microphone"], type="numpy"),
|
52 |
-
outputs="audio",
|
53 |
-
title="Speech-to-Hindi",
|
54 |
-
description="Record your speech or upload an audio file to transcribe, translate to Hindi, and convert to speech."
|
55 |
-
)
|
56 |
-
|
57 |
-
# Launch the Gradio app
|
58 |
-
demo.launch(debug=True)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|