Spaces:
Sleeping
Sleeping
File size: 2,152 Bytes
d27f30a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import torch
import soundfile as sf
import numpy as np
import gradio as gr
from transformers import VitsModel, MBartForConditionalGeneration, AutoTokenizer, pipeline
# Load the models and tokenizers
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
translation_tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", use_fast=False)
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-hin")
def process_audio(audio):
if audio is None:
return "No audio provided.", None
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
# Transcribe the audio
transcription = transcriber({"sampling_rate": sr, "raw": y})["text"]
# Translate from English to Hindi
model_inputs = translation_tokenizer(transcription, return_tensors="pt", padding=True, truncation=True)
generated_tokens = translation_model.generate(
**model_inputs,
forced_bos_token_id=translation_tokenizer.lang_code_to_id["hi_IN"]
)
translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
# Generate Hindi speech from translated text
tts_inputs = tts_tokenizer(translated_text, return_tensors="pt")
try:
with torch.no_grad():
tts_output = tts_model(**tts_inputs)
waveform = tts_output.waveform.squeeze().cpu().numpy()
except RuntimeError as e:
return f"Runtime Error: {e}", None
# Save the waveform to an audio file
audio_path = 'output.wav'
sf.write(audio_path, waveform, 22050)
return audio_path
# Create the Gradio interface
demo = gr.Interface(
fn=process_audio,
inputs=gr.Audio(sources=["microphone"], type="numpy"),
outputs="audio",
title="Speech-to-Hindi",
description="Record your speech or upload an audio file to transcribe, translate to Hindi, and convert to speech."
)
# Launch the Gradio app
demo.launch(debug=True)
|