Kartheesh commited on
Commit
f1bf352
·
1 Parent(s): 6fb9d36

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +1116 -0
app.py ADDED
@@ -0,0 +1,1116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+
3
+ dataset = load_dataset("Kartheesh/MLdataset")
4
+ import gradio as gr
5
+ import numpy as np
6
+ import pandas as pd
7
+ def greet(year,co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission):
8
+
9
+ #1996
10
+
11
+ #data collection
12
+ data1=pd.read_excel("/content/FINAL_DATASET.xlsx")
13
+ df1 = data1.drop(['YEAR'], axis=1)
14
+
15
+
16
+
17
+ #data indexing
18
+ x=df1.iloc[:,1:].values
19
+ y=df1.iloc[:,0].values
20
+ np.reshape(y,(-1,1))
21
+
22
+ #split the dataset
23
+ from sklearn.model_selection import train_test_split
24
+ X_train, X_test, y_train, y_test = train_test_split(
25
+ x, y, test_size=0.33, random_state=42)
26
+
27
+
28
+ #traing the dataset
29
+ from sklearn.linear_model import LinearRegression
30
+
31
+ reg = LinearRegression().fit(X_train, y_train)
32
+
33
+
34
+ y_pred1=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
35
+
36
+
37
+
38
+
39
+
40
+ #Equation
41
+ total1="2.29209688*(x1)+(-17.24834114)*(x2)+(-34.46449984)*(x3)+441.88734541(x4)+(-10.5704468)*(x5)+3032.3276611889232"
42
+
43
+
44
+ #1997
45
+
46
+ #data collection
47
+ data2=pd.read_excel("/content/ans1 (1).xlsx")
48
+ df2 = data2.drop(['YEAR '], axis=1)
49
+
50
+
51
+
52
+ #data indexing
53
+ x=df2.iloc[:,1:].values
54
+ y=df2.iloc[:,0].values
55
+ np.reshape(y,(-1,1))
56
+
57
+ #split the dataset
58
+ from sklearn.model_selection import train_test_split
59
+ X_train, X_test, y_train, y_test = train_test_split(
60
+ x, y, test_size=0.33, random_state=42)
61
+
62
+
63
+ #traing the dataset
64
+ from sklearn.linear_model import LinearRegression
65
+
66
+ reg = LinearRegression().fit(X_train, y_train)
67
+
68
+
69
+ y_pred2=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
70
+
71
+
72
+
73
+
74
+
75
+ #Equation
76
+ total2="1.87191609*(x1)+19.64115875*(x2)+91.64048224*(x3)+188.38350818*(x4)+23.55498894*(x5)-10954.252919457198"
77
+
78
+
79
+
80
+ #1998
81
+
82
+ #data collection
83
+ data3=pd.read_excel("/content/ans2.xlsx")
84
+ df3 = data3.drop([' YEAR '], axis=1)
85
+
86
+
87
+
88
+ #data indexing
89
+ x=df3.iloc[:,1:].values
90
+ y=df3.iloc[:,0].values
91
+ np.reshape(y,(-1,1))
92
+
93
+ #split the dataset
94
+ from sklearn.model_selection import train_test_split
95
+ X_train, X_test, y_train, y_test = train_test_split(
96
+ x, y, test_size=0.33, random_state=42)
97
+
98
+
99
+ #traing the dataset
100
+ from sklearn.linear_model import LinearRegression
101
+
102
+ reg = LinearRegression().fit(X_train, y_train)
103
+
104
+
105
+ y_pred3=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
106
+
107
+
108
+
109
+
110
+
111
+ #Equation
112
+ total3="-16.16933055*(x1)+222.22199705*(x2)+137.12332335*(x3)+325.31073157*(x4)+(-123.63496668)*(x5)+56972.685015326366"
113
+
114
+
115
+
116
+ #1999
117
+
118
+ #data collection
119
+ data4=pd.read_excel("/content/ans3.xlsx")
120
+ df4 = data4.drop([' YEAR '], axis=1)
121
+
122
+
123
+
124
+ #data indexing
125
+ x=df4.iloc[:,1:].values
126
+ y=df4.iloc[:,0].values
127
+ np.reshape(y,(-1,1))
128
+
129
+ #split the dataset
130
+ from sklearn.model_selection import train_test_split
131
+ X_train, X_test, y_train, y_test = train_test_split(
132
+ x, y, test_size=0.33, random_state=42)
133
+
134
+
135
+ #traing the dataset
136
+ from sklearn.linear_model import LinearRegression
137
+
138
+ reg = LinearRegression().fit(X_train, y_train)
139
+
140
+
141
+ y_pred4=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
142
+
143
+
144
+
145
+
146
+
147
+ #Equation
148
+ total4="24.45036879*(x1)+(-30.15985323)*(x2)+40.89603753*(x3)+102.95011027*(x4)+(-26.35323684)*(x5)+7934.309705068432"
149
+
150
+
151
+
152
+ #2000
153
+
154
+ #data collection
155
+ data5=pd.read_excel("/content/ans4.xlsx")
156
+ df5 = data5.drop([' YEAR '], axis=1)
157
+
158
+
159
+
160
+ #data indexing
161
+ x=df5.iloc[:,1:].values
162
+ y=df5.iloc[:,0].values
163
+ np.reshape(y,(-1,1))
164
+
165
+ #split the dataset
166
+ from sklearn.model_selection import train_test_split
167
+ X_train, X_test, y_train, y_test = train_test_split(
168
+ x, y, test_size=0.33, random_state=42)
169
+
170
+
171
+ #traing the dataset
172
+ from sklearn.linear_model import LinearRegression
173
+
174
+ reg = LinearRegression().fit(X_train, y_train)
175
+
176
+
177
+ y_pred5=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
178
+
179
+
180
+
181
+
182
+
183
+ #Equation
184
+ total5="9.64446417*(x1)+1536.50170104*(x2)+(-43.51829088)*(x3)+(-209.86341104)*(x4)+(-56.82344007)*(x5)+21672.006533155447"
185
+
186
+
187
+
188
+ #2001
189
+
190
+ #data collection
191
+ data6=pd.read_excel("/content/ans5.xlsx")
192
+ df6 = data6.drop([' YEAR '], axis=1)
193
+
194
+
195
+
196
+ #data indexing
197
+ x=df6.iloc[:,1:].values
198
+ y=df6.iloc[:,0].values
199
+ np.reshape(y,(-1,1))
200
+
201
+ #split the dataset
202
+ from sklearn.model_selection import train_test_split
203
+ X_train, X_test, y_train, y_test = train_test_split(
204
+ x, y, test_size=0.33, random_state=42)
205
+
206
+
207
+ #traing the dataset
208
+ from sklearn.linear_model import LinearRegression
209
+
210
+ reg = LinearRegression().fit(X_train, y_train)
211
+
212
+
213
+ y_pred6=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
214
+
215
+
216
+
217
+
218
+
219
+ #Equation
220
+ total6="(-17.95980305)*(x1)+397.29027184*(x2)+332.85116421*(x3)+176.63505073*(x4)+(-100.69005777)*(x5)+47882.75497380103"
221
+
222
+
223
+ #2002
224
+
225
+ #data collection
226
+ data7=pd.read_excel("/content/ans6.xlsx")
227
+ df7 = data7.drop([' YEAR '], axis=1)
228
+
229
+
230
+
231
+ #data indexing
232
+ x=df7.iloc[:,1:].values
233
+ y=df7.iloc[:,0].values
234
+ np.reshape(y,(-1,1))
235
+
236
+ #split the dataset
237
+ from sklearn.model_selection import train_test_split
238
+ X_train, X_test, y_train, y_test = train_test_split(
239
+ x, y, test_size=0.33, random_state=42)
240
+
241
+
242
+ #traing the dataset
243
+ from sklearn.linear_model import LinearRegression
244
+
245
+ reg = LinearRegression().fit(X_train, y_train)
246
+
247
+
248
+ y_pred7=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
249
+
250
+
251
+
252
+
253
+
254
+ #Equation
255
+ total7="4.08573322*(x1)+531.87792204*(x2)+(-17.3614085 )*(x3)+(-11.17919737)*(x4)+(-53.48796076)*(x5)+22953.88111229325"
256
+
257
+
258
+ #2003
259
+
260
+ #data collection
261
+ data8=pd.read_excel("/content/ans7.xlsx")
262
+ df8 = data8.drop([' YEAR '], axis=1)
263
+
264
+
265
+
266
+ #data indexing
267
+ x=df8.iloc[:,1:].values
268
+ y=df8.iloc[:,0].values
269
+ np.reshape(y,(-1,1))
270
+
271
+ #split the dataset
272
+ from sklearn.model_selection import train_test_split
273
+ X_train, X_test, y_train, y_test = train_test_split(
274
+ x, y, test_size=0.33, random_state=42)
275
+
276
+
277
+ #traing the dataset
278
+ from sklearn.linear_model import LinearRegression
279
+
280
+ reg = LinearRegression().fit(X_train, y_train)
281
+
282
+
283
+ y_pred8=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
284
+
285
+
286
+
287
+
288
+
289
+ #Equation
290
+ total8="31.82512443*(x1)+(-521.96868383 )*(x2)+(-43.51829088)*(x3)+ 205.27514768 *(x4)+(-97.91577198)*(x5)+37973.451433772294"
291
+
292
+
293
+
294
+ #2004
295
+
296
+ #data collection
297
+ data9=pd.read_excel("/content/ans8.xlsx")
298
+ df9 = data9.drop([' YEAR '], axis=1)
299
+
300
+
301
+
302
+ #data indexing
303
+ x=df9.iloc[:,1:].values
304
+ y=df9.iloc[:,0].values
305
+ np.reshape(y,(-1,1))
306
+
307
+ #split the dataset
308
+ from sklearn.model_selection import train_test_split
309
+ X_train, X_test, y_train, y_test = train_test_split(
310
+ x, y, test_size=0.33, random_state=42)
311
+
312
+
313
+ #traing the dataset
314
+ from sklearn.linear_model import LinearRegression
315
+
316
+ reg = LinearRegression().fit(X_train, y_train)
317
+
318
+
319
+ y_pred9=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
320
+
321
+
322
+
323
+
324
+
325
+ #Equation
326
+ total9="9.64446417*(x1)+1536.50170104*(x2)+(-43.51829088)*(x3)+(-209.86341104)*(x4)+(-56.82344007)*(x5)+21672.006533155447"
327
+
328
+
329
+
330
+ #2005
331
+
332
+ #data collection
333
+ data10=pd.read_excel("/content/ans9.xlsx")
334
+ df10 = data10.drop([' YEAR '], axis=1)
335
+
336
+
337
+
338
+ #data indexing
339
+ x=df10.iloc[:,1:].values
340
+ y=df10.iloc[:,0].values
341
+ np.reshape(y,(-1,1))
342
+
343
+ #split the dataset
344
+ from sklearn.model_selection import train_test_split
345
+ X_train, X_test, y_train, y_test = train_test_split(
346
+ x, y, test_size=0.33, random_state=42)
347
+
348
+
349
+ #traing the dataset
350
+ from sklearn.linear_model import LinearRegression
351
+
352
+ reg = LinearRegression().fit(X_train, y_train)
353
+
354
+
355
+ y_pred10=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
356
+
357
+
358
+
359
+
360
+
361
+ #Equation
362
+ total10="(-46.41395388)*(x1)+27.19076539*(x2)+(442.44336049)*(x3)+(-205.61881527)*(x4)+120.39426307*(x5)-46289.48823133327"
363
+
364
+
365
+
366
+ #2006
367
+
368
+ #data collection
369
+ data11=pd.read_excel("/content/ans10.xlsx")
370
+ df11 = data11.drop([' YEAR '], axis=1)
371
+
372
+
373
+
374
+ #data indexing
375
+ x=df11.iloc[:,1:].values
376
+ y=df11.iloc[:,0].values
377
+ np.reshape(y,(-1,1))
378
+
379
+ #split the dataset
380
+ from sklearn.model_selection import train_test_split
381
+ X_train, X_test, y_train, y_test = train_test_split(
382
+ x, y, test_size=0.33, random_state=42)
383
+
384
+
385
+ #traing the dataset
386
+ from sklearn.linear_model import LinearRegression
387
+
388
+ reg = LinearRegression().fit(X_train, y_train)
389
+
390
+
391
+ y_pred11=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
392
+
393
+
394
+
395
+
396
+
397
+ #Equation
398
+ total11="(-15.45736104)*(x1)+23.92398419*(x2)+334.30252317*(x3)+151.55678804*(x4)+(-66.42769537)*(x5)+29294.014037250927"
399
+
400
+
401
+
402
+
403
+ #2007
404
+
405
+ #data collection
406
+ data12=pd.read_excel("/content/ans11.xlsx")
407
+ df12 = data12.drop([' YEAR '], axis=1)
408
+
409
+
410
+
411
+ #data indexing
412
+ x=df12.iloc[:,1:].values
413
+ y=df12.iloc[:,0].values
414
+ np.reshape(y,(-1,1))
415
+
416
+ #split the dataset
417
+ from sklearn.model_selection import train_test_split
418
+ X_train, X_test, y_train, y_test = train_test_split(
419
+ x, y, test_size=0.33, random_state=42)
420
+
421
+
422
+ #traing the dataset
423
+ from sklearn.linear_model import LinearRegression
424
+
425
+ reg = LinearRegression().fit(X_train, y_train)
426
+
427
+
428
+ y_pred12=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
429
+
430
+
431
+
432
+
433
+
434
+ #Equation
435
+ total12="33.41323832*(x1)+(-36.18735569)*(x2)+768.11444325*(x3)+(-182.42626044 )*(x4)+(14.70116631)*(x5)-6967.764713347897"
436
+
437
+
438
+
439
+ #2008
440
+
441
+ #data collection
442
+ data13=pd.read_excel("/content/ans12.xlsx")
443
+ df13 = data13.drop([' YEAR '], axis=1)
444
+
445
+
446
+
447
+ #data indexing
448
+ x=df13.iloc[:,1:].values
449
+ y=df13.iloc[:,0].values
450
+ np.reshape(y,(-1,1))
451
+
452
+ #split the dataset
453
+ from sklearn.model_selection import train_test_split
454
+ X_train, X_test, y_train, y_test = train_test_split(
455
+ x, y, test_size=0.33, random_state=42)
456
+
457
+
458
+ #traing the dataset
459
+ from sklearn.linear_model import LinearRegression
460
+
461
+ reg = LinearRegression().fit(X_train, y_train)
462
+
463
+
464
+ y_pred13=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
465
+
466
+
467
+
468
+
469
+
470
+ #Equation
471
+ total13="180.34683409 *(x1)+49.48628012*(x2)+152.71729516*(x3)+( -174.89679207)*(x4)+(-144.40854904)*(x5)+30420.505686819404"
472
+
473
+
474
+
475
+
476
+
477
+ #2009
478
+
479
+ #data collection
480
+ data14=pd.read_excel("/content/ans13.xlsx")
481
+ df14 = data14.drop([' YEAR '], axis=1)
482
+
483
+
484
+
485
+ #data indexing
486
+ x=df14.iloc[:,1:].values
487
+ y=df14.iloc[:,0].values
488
+ np.reshape(y,(-1,1))
489
+
490
+ #split the dataset
491
+ from sklearn.model_selection import train_test_split
492
+ X_train, X_test, y_train, y_test = train_test_split(
493
+ x, y, test_size=0.33, random_state=42)
494
+
495
+
496
+ #traing the dataset
497
+ from sklearn.linear_model import LinearRegression
498
+
499
+ reg = LinearRegression().fit(X_train, y_train)
500
+
501
+
502
+ y_pred14=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
503
+
504
+
505
+
506
+
507
+
508
+ #Equation
509
+ total14="17.11355138 *(x1)+37.59837451*(x2)+156.43469383*(x3)+(-104.8362236)*(x4)+81.10973597*(x5)-38919.678559060834"
510
+
511
+
512
+
513
+
514
+ #2010
515
+
516
+ #data collection
517
+ data15=pd.read_excel("/content/ans14.xlsx")
518
+ df15 = data15.drop([' YEAR '], axis=1)
519
+
520
+
521
+
522
+ #data indexing
523
+ x=df15.iloc[:,1:].values
524
+ y=df15.iloc[:,0].values
525
+ np.reshape(y,(-1,1))
526
+
527
+ #split the dataset
528
+ from sklearn.model_selection import train_test_split
529
+ X_train, X_test, y_train, y_test = train_test_split(
530
+ x, y, test_size=0.33, random_state=42)
531
+
532
+
533
+ #traing the dataset
534
+ from sklearn.linear_model import LinearRegression
535
+
536
+ reg = LinearRegression().fit(X_train, y_train)
537
+
538
+
539
+ y_pred15=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
540
+
541
+
542
+
543
+
544
+
545
+ #Equation
546
+ total15="39.06418699 *(x1)+148.53455807*(x2)+14.69213499 *(x3)+107.43795246*(x4)+(-207.77185028)*(x5)+82358.63651384937"
547
+
548
+
549
+
550
+
551
+ #2011
552
+
553
+ #data collection
554
+ data16=pd.read_excel("/content/ans15.xlsx")
555
+ df16 = data16.drop([' YEAR '], axis=1)
556
+
557
+
558
+
559
+ #data indexing
560
+ x=df16.iloc[:,1:].values
561
+ y=df16.iloc[:,0].values
562
+ np.reshape(y,(-1,1))
563
+
564
+ #split the dataset
565
+ from sklearn.model_selection import train_test_split
566
+ X_train, X_test, y_train, y_test = train_test_split(
567
+ x, y, test_size=0.33, random_state=42)
568
+
569
+
570
+ #traing the dataset
571
+ from sklearn.linear_model import LinearRegression
572
+
573
+ reg = LinearRegression().fit(X_train, y_train)
574
+
575
+
576
+ y_pred16=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
577
+
578
+
579
+
580
+
581
+
582
+ #Equation
583
+ total16="36.2551509 *(x1)+-21.16118114*(x2)+372.06856269*(x3)+(-59.04384028)*(x4)+(-49.61395171)*(x5)+18259.681897588325"
584
+
585
+
586
+
587
+
588
+ #2012
589
+
590
+ #data collection
591
+ data17=pd.read_excel("/content/ans16.xlsx")
592
+ df17 = data17.drop([' YEAR '], axis=1)
593
+
594
+
595
+
596
+ #data indexing
597
+ x=df17.iloc[:,1:].values
598
+ y=df17.iloc[:,0].values
599
+ np.reshape(y,(-1,1))
600
+
601
+ #split the dataset
602
+ from sklearn.model_selection import train_test_split
603
+ X_train, X_test, y_train, y_test = train_test_split(
604
+ x, y, test_size=0.33, random_state=42)
605
+
606
+
607
+ #traing the dataset
608
+ from sklearn.linear_model import LinearRegression
609
+
610
+ reg = LinearRegression().fit(X_train, y_train)
611
+
612
+
613
+ y_pred17=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
614
+
615
+
616
+
617
+
618
+
619
+ #Equation
620
+ total17="76.15862868 *(x1)+24.66304806*(x2)+(-31.1753211)*(x3)+(-281.13550722 )*(x4)+48.76763872*(x5)-27641.15357666507"
621
+
622
+
623
+
624
+ #2013
625
+
626
+ #data collection
627
+ data18=pd.read_excel("/content/ans17.xlsx")
628
+ df18 = data18.drop([' YEAR '], axis=1)
629
+
630
+
631
+
632
+ #data indexing
633
+ x=df18.iloc[:,1:].values
634
+ y=df18.iloc[:,0].values
635
+ np.reshape(y,(-1,1))
636
+
637
+ #split the dataset
638
+ from sklearn.model_selection import train_test_split
639
+ X_train, X_test, y_train, y_test = train_test_split(
640
+ x, y, test_size=0.33, random_state=42)
641
+
642
+
643
+ #traing the dataset
644
+ from sklearn.linear_model import LinearRegression
645
+
646
+ reg = LinearRegression().fit(X_train, y_train)
647
+
648
+
649
+ y_pred18=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
650
+
651
+
652
+
653
+
654
+
655
+ #Equation
656
+ total18="138.94519275 *(x1)+19.41784298*(x2)+160.13405515*(x3)+1190.40134987*(x4)+(-787.72926112)*(x5)+340350.32984524494"
657
+
658
+
659
+
660
+
661
+
662
+ #2014
663
+
664
+ #data collection
665
+ data19=pd.read_excel("/content/ans18.xlsx")
666
+ df19 = data19.drop([' YEAR '], axis=1)
667
+
668
+
669
+
670
+ #data indexing
671
+ x=df19.iloc[:,1:].values
672
+ y=df19.iloc[:,0].values
673
+ np.reshape(y,(-1,1))
674
+
675
+ #split the dataset
676
+ from sklearn.model_selection import train_test_split
677
+ X_train, X_test, y_train, y_test = train_test_split(
678
+ x, y, test_size=0.33, random_state=42)
679
+
680
+
681
+ #traing the dataset
682
+ from sklearn.linear_model import LinearRegression
683
+
684
+ reg = LinearRegression().fit(X_train, y_train)
685
+
686
+
687
+ y_pred19=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
688
+
689
+
690
+
691
+
692
+
693
+ #Equation
694
+ total19="83.98184027*(x1)+61.59628945*(x2)+740.33672736*(x3)+(-347.39343539)*(x4)+(-293.6388187)*(x5)+121547.59923111903"
695
+
696
+
697
+
698
+
699
+
700
+ #2015
701
+
702
+ #data collection
703
+ data20=pd.read_excel("/content/ans19.xlsx")
704
+ df20 = data20.drop([' YEAR '], axis=1)
705
+
706
+
707
+
708
+ #data indexing
709
+ x=df20.iloc[:,1:].values
710
+ y=df20.iloc[:,0].values
711
+ np.reshape(y,(-1,1))
712
+
713
+ #split the dataset
714
+ from sklearn.model_selection import train_test_split
715
+ X_train, X_test, y_train, y_test = train_test_split(
716
+ x, y, test_size=0.33, random_state=42)
717
+
718
+
719
+ #traing the dataset
720
+ from sklearn.linear_model import LinearRegression
721
+
722
+ reg = LinearRegression().fit(X_train, y_train)
723
+
724
+
725
+ y_pred20=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
726
+
727
+
728
+
729
+
730
+
731
+ #Equation
732
+ total20="25.74397202*(x1)+(-109.5936775)*(x2)+293.36826631*(x3)+(-52.97554351)*(x4)+178.24908664*(x5)-80332.13002824014"
733
+
734
+
735
+
736
+
737
+
738
+
739
+
740
+ #2016
741
+
742
+ #data collection
743
+ data21=pd.read_excel("/content/ans20.xlsx")
744
+ df21 = data21.drop([' YEAR '], axis=1)
745
+
746
+
747
+
748
+ #data indexing
749
+ x=df21.iloc[:,1:].values
750
+ y=df21.iloc[:,0].values
751
+ np.reshape(y,(-1,1))
752
+
753
+ #split the dataset
754
+ from sklearn.model_selection import train_test_split
755
+ X_train, X_test, y_train, y_test = train_test_split(
756
+ x, y, test_size=0.33, random_state=42)
757
+
758
+
759
+ #traing the dataset
760
+ from sklearn.linear_model import LinearRegression
761
+
762
+ reg = LinearRegression().fit(X_train, y_train)
763
+
764
+
765
+ y_pred21=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
766
+
767
+
768
+
769
+
770
+
771
+ #Equation
772
+ total21="-9.33709575 *(x1)+(-60.54283141)*(x2)+1291.89291784*(x3)+112.70137053*(x4)+167.06117048*(x5)-76365.90014799789"
773
+
774
+
775
+
776
+
777
+
778
+ #2017
779
+
780
+ #data collection
781
+ data22=pd.read_excel("/content/ans21.xlsx")
782
+ df22 = data22.drop([' YEAR '], axis=1)
783
+
784
+
785
+
786
+ #data indexing
787
+ x=df22.iloc[:,1:].values
788
+ y=df22.iloc[:,0].values
789
+ np.reshape(y,(-1,1))
790
+
791
+ #split the dataset
792
+ from sklearn.model_selection import train_test_split
793
+ X_train, X_test, y_train, y_test = train_test_split(
794
+ x, y, test_size=0.33, random_state=42)
795
+
796
+
797
+ #traing the dataset
798
+ from sklearn.linear_model import LinearRegression
799
+
800
+ reg = LinearRegression().fit(X_train, y_train)
801
+
802
+
803
+ y_pred22=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
804
+
805
+
806
+
807
+
808
+
809
+ #Equation
810
+ total22="-12.58553956 *(x1)+54.81099258*(x2)+224.41124874*(x3)+437.35226861*(x4)+(-160.78658794)*(x5)+68323.07737183299"
811
+
812
+
813
+
814
+
815
+
816
+ #2018
817
+
818
+ #data collection
819
+ data23=pd.read_excel("/content/ans22.xlsx")
820
+ df23 = data23.drop([' YEAR '], axis=1)
821
+
822
+
823
+
824
+ #data indexing
825
+ x=df23.iloc[:,1:].values
826
+ y=df23.iloc[:,0].values
827
+ np.reshape(y,(-1,1))
828
+
829
+ #split the dataset
830
+ from sklearn.model_selection import train_test_split
831
+ X_train, X_test, y_train, y_test = train_test_split(
832
+ x, y, test_size=0.33, random_state=42)
833
+
834
+
835
+ #traing the dataset
836
+ from sklearn.linear_model import LinearRegression
837
+
838
+ reg = LinearRegression().fit(X_train, y_train)
839
+
840
+
841
+ y_pred23=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
842
+
843
+
844
+
845
+
846
+
847
+ #Equation
848
+ total23="73.20314723*(x1)+158.24671048*(x2)+(-3876.80695302)*(x3)+356.25236863*(x4)+(-195.73184137)*(x5)+85757.9509512224"
849
+
850
+
851
+
852
+
853
+ #2019
854
+
855
+ #data collection
856
+ data24=pd.read_excel("/content/ans23.xlsx")
857
+ df24 = data24.drop([' YEAR '], axis=1)
858
+
859
+
860
+
861
+ #data indexing
862
+ x=df24.iloc[:,1:].values
863
+ y=df24.iloc[:,0].values
864
+ np.reshape(y,(-1,1))
865
+
866
+ #split the dataset
867
+ from sklearn.model_selection import train_test_split
868
+ X_train, X_test, y_train, y_test = train_test_split(
869
+ x, y, test_size=0.33, random_state=42)
870
+
871
+
872
+ #traing the dataset
873
+ from sklearn.linear_model import LinearRegression
874
+
875
+ reg = LinearRegression().fit(X_train, y_train)
876
+
877
+
878
+ y_pred24=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
879
+
880
+
881
+
882
+
883
+
884
+ #Equation
885
+ total24="104.06131346*(x1)+110.40576115*(x2)+(-3143.30201973)*(x3)+(-466.5687285)*(x4)+(-40.30732688)*(x5)+6946.199087391373"
886
+
887
+
888
+
889
+
890
+
891
+ #2020
892
+
893
+ #data collection
894
+ data25=pd.read_excel("/content/ans24.xlsx")
895
+ df25 = data25.drop([' YEAR '], axis=1)
896
+
897
+
898
+
899
+ #data indexing
900
+ x=df25.iloc[:,1:].values
901
+ y=df25.iloc[:,0].values
902
+ np.reshape(y,(-1,1))
903
+
904
+ #split the dataset
905
+ from sklearn.model_selection import train_test_split
906
+ X_train, X_test, y_train, y_test = train_test_split(
907
+ x, y, test_size=0.33, random_state=42)
908
+
909
+
910
+ #traing the dataset
911
+ from sklearn.linear_model import LinearRegression
912
+
913
+ reg = LinearRegression().fit(X_train, y_train)
914
+
915
+
916
+ y_pred25=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
917
+
918
+
919
+
920
+
921
+
922
+ #Equation
923
+ total25="22.78813682*(x1)+46.1536507*(x2)+78.00814512*(x3)+(-71.38031119)*(x4)+(-37.57839411)*(x5)+12559.184605195129"
924
+
925
+
926
+
927
+
928
+
929
+ #2021
930
+
931
+ #data collection
932
+ data26=pd.read_excel("/content/ans25.xlsx")
933
+ df26 = data26.drop([' YEAR '], axis=1)
934
+
935
+
936
+
937
+ #data indexing
938
+ x=df26.iloc[:,1:].values
939
+ y=df26.iloc[:,0].values
940
+ np.reshape(y,(-1,1))
941
+
942
+ #split the dataset
943
+ from sklearn.model_selection import train_test_split
944
+ X_train, X_test, y_train, y_test = train_test_split(
945
+ x, y, test_size=0.33, random_state=42)
946
+
947
+
948
+ #traing the dataset
949
+ from sklearn.linear_model import LinearRegression
950
+
951
+ reg = LinearRegression().fit(X_train, y_train)
952
+
953
+
954
+ y_pred26=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
955
+
956
+
957
+
958
+
959
+
960
+ #Equation
961
+ total26="63.70545758*(x1)+9.57432502*(x2)+1734.12898357*(x3)+(-230.53815238)*(x4)+93.1299683*(x5)-51860.81441391745"
962
+
963
+
964
+
965
+
966
+
967
+ #2022
968
+
969
+ #data collection
970
+ data27=pd.read_excel("/content/ans26.xlsx")
971
+ df27 = data27.drop([' YEAR '], axis=1)
972
+
973
+
974
+
975
+ #data indexing
976
+ x=df27.iloc[:,1:].values
977
+ y=df27.iloc[:,0].values
978
+ np.reshape(y,(-1,1))
979
+
980
+ #split the dataset
981
+ from sklearn.model_selection import train_test_split
982
+ X_train, X_test, y_train, y_test = train_test_split(
983
+ x, y, test_size=0.33, random_state=42)
984
+
985
+
986
+ #traing the dataset
987
+ from sklearn.linear_model import LinearRegression
988
+
989
+ reg = LinearRegression().fit(X_train, y_train)
990
+
991
+
992
+ y_pred27=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
993
+
994
+
995
+
996
+
997
+
998
+ #Equation
999
+ total27="15.98972327*(x1)+5568.67299429*(x2)+79.28661735*(x3)+16.79333316*(x4)+(-87.10169494)*(x5)+40155.32700035415"
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+ #app section
1008
+ if(year==1996):
1009
+ return total1,y_pred1
1010
+
1011
+ elif(year==1997):
1012
+ return total2,y_pred2
1013
+
1014
+ elif(year==1998):
1015
+ return total3,y_pred3
1016
+
1017
+ elif(year==1999):
1018
+ return total4,y_pred4
1019
+
1020
+ elif(year==2000):
1021
+ return total5,y_pred5
1022
+
1023
+ elif(year==2001):
1024
+ return total6,y_pred6
1025
+
1026
+ elif(year==2002):
1027
+ return total7,y_pred7
1028
+
1029
+ elif(year==2003):
1030
+ return total8,y_pred8
1031
+
1032
+ elif(year==2004):
1033
+ return total9,y_pred9
1034
+
1035
+ elif(year==2005):
1036
+ return total10,y_pred10
1037
+
1038
+ elif(year==2006):
1039
+ return total11,y_pred11
1040
+
1041
+ elif(year==2007):
1042
+ return total12,y_pred12
1043
+
1044
+ elif(year==2008):
1045
+ return total13,y_pred13
1046
+
1047
+ elif(year==2009):
1048
+ return total14,y_pred14
1049
+
1050
+ elif(year==2010):
1051
+ return total15,y_pred15
1052
+
1053
+ elif(year==2011):
1054
+ return total16,y_pred16
1055
+
1056
+ elif(year==2012):
1057
+ return total17,y_pred17
1058
+
1059
+ elif(year==2013):
1060
+ return total18,y_pred18
1061
+
1062
+ elif(year==2014):
1063
+ return total19,y_pred19
1064
+
1065
+ elif(year==2015):
1066
+ return total20,y_pred20
1067
+
1068
+ elif(year==2016):
1069
+ return total21,y_pred21
1070
+
1071
+ elif(year==2017):
1072
+ return total22,y_pred22
1073
+
1074
+ elif(year==2018):
1075
+ return total23,y_pred23
1076
+
1077
+ elif(year==2019):
1078
+ return total24,y_pred24
1079
+
1080
+ elif(year==2020):
1081
+ return total25,y_pred25
1082
+
1083
+ elif(year==2021):
1084
+ return total26,y_pred26
1085
+
1086
+ elif(year==2022):
1087
+ return total27,y_pred27
1088
+
1089
+ else:
1090
+ return "no",0
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+
1099
+ demo = gr.Interface(
1100
+ fn=greet,
1101
+ inputs=["number","number","number","number","number","number"],
1102
+ outputs=["text","number"],
1103
+ title="BARA SHIGRI",
1104
+ css="div {background-image: url('https://drive.google.com/uc?export=view&id=1o4Q6O7LAFTpejs4zwOo6X-BYfrjjyTVr');background-size: 2000px 2000px;}",
1105
+ description=
1106
+ "Bara Shigri feeds the Chandra River which after its confluence at Tandi with the Bhaga River is known as Chandrabhaga or Chenab."
1107
+ "According to Hugh Whistler’s 1924 writing, Shigri is applied par-excellence to one particular glacier that emerges from the mountains on the left bank of the Chenab. It is said to be several miles long, and the snout reaches right down to the river, lying athwart the customary road from Kulu to Spiti... In 1836 this glacier dammed the Chenab River, causing the formation of a large lake, which eventually broke loose and carried devastation down the valley."
1108
+ "Across the Bara Shigri is another glacier known as Chhota Shigri. It is, as the name suggests, a comparatively smaller glacier.",
1109
+ description_font_color="Black"
1110
+
1111
+
1112
+ )
1113
+ demo.launch()
1114
+
1115
+
1116
+