Update app.py
Browse files
app.py
CHANGED
@@ -4,32 +4,7 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
def greet(year,co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission):
|
6 |
|
7 |
-
#1996
|
8 |
|
9 |
-
#data collection
|
10 |
-
data1=pd.read_excel("/content/FINAL_DATASET.xlsx")
|
11 |
-
df1 = data1.drop(['YEAR'], axis=1)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#data indexing
|
16 |
-
x=df1.iloc[:,1:].values
|
17 |
-
y=df1.iloc[:,0].values
|
18 |
-
np.reshape(y,(-1,1))
|
19 |
-
|
20 |
-
#split the dataset
|
21 |
-
from sklearn.model_selection import train_test_split
|
22 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
23 |
-
x, y, test_size=0.33, random_state=42)
|
24 |
-
|
25 |
-
|
26 |
-
#traing the dataset
|
27 |
-
from sklearn.linear_model import LinearRegression
|
28 |
-
|
29 |
-
reg = LinearRegression().fit(X_train, y_train)
|
30 |
-
|
31 |
-
|
32 |
-
y_pred1=reg.predict([[co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission]])
|
33 |
|
34 |
|
35 |
|
|
|
4 |
import pandas as pd
|
5 |
def greet(year,co2_emission,No2_emission,so2_emission,Global_Warming,Methane_emission):
|
6 |
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
|