Spaces:
Sleeping
Sleeping
File size: 19,356 Bytes
de95d76 901094c 7deb072 de95d76 901094c de95d76 fca1204 de95d76 901094c 3332b70 de95d76 fca1204 901094c de95d76 901094c de95d76 901094c de95d76 901094c de95d76 901094c de95d76 901094c de95d76 c6c83f4 de95d76 620920c de95d76 901094c de95d76 3332b70 2d9ca38 901094c 2d9ca38 901094c 3332b70 7d38fab 901094c 3332b70 2d9ca38 3332b70 2d9ca38 3332b70 901094c 3332b70 901094c 3332b70 901094c d8b2c18 3332b70 901094c 3332b70 901094c 3332b70 901094c 3332b70 901094c 3332b70 fca1204 d763dc5 de95d76 9261a71 ecb7969 71b4fa4 b2607d3 ee37240 187bbc5 7d38fab ef846b5 2d6bb38 35731b4 8b629c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# === IMPORTS ===
import streamlit as st
from PIL import Image
from openai import OpenAI
from pathlib import Path
# β
1. Page Configuration β MUST be first Streamlit command
st.set_page_config(page_title="AI Architecture Assistant", layout="centered")
# β
2. Inline custom CSS with Poppins font and olive green theme
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;500;700&display=swap');
.stApp {
background-color: #f4f7f5 !important;
font-family: 'Poppins', sans-serif;
color: #1e1e1e;
padding: 1rem;
}
/* Headings */
h1 {
font-family: 'Poppins', sans-serif;
color: #3a5a40 !important;
font-weight: 700;
font-size: 2.3rem;
}
h2, h3 {
font-family: 'Poppins', sans-serif;
color: #344e41 !important;
font-weight: 600;
font-size: 1.4rem;
}
/* Inputs */
.stTextInput input, .stTextArea textarea {
background-color: #ffffff !important;
color: #1e1e1e !important;
border: 1px solid #c8d6c1;
border-radius: 10px;
padding: 14px;
font-size: 1rem;
font-family: 'Poppins', sans-serif;
}
/* Buttons */
.stButton > button {
background-color: #588157;
color: white;
font-weight: 600;
font-family: 'Poppins', sans-serif;
padding: 0.7rem 1.6rem;
font-size: 1rem;
border: none;
border-radius: 10px;
transition: all 0.3s ease;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.stButton > button:hover {
background-color: #3a5a40;
box-shadow: 0 4px 10px rgba(0,0,0,0.15);
}
/* Links */
a {
color: #3a5a40;
font-family: 'Poppins', sans-serif;
text-decoration: none;
font-weight: 500;
}
a:hover {
text-decoration: underline;
color: #2c4030;
}
</style>
""", unsafe_allow_html=True)
# β
3. Logo Display (must come after styling)
try:
logo = Image.open("ThinkTiny.jpg")
st.image(logo, width=300)
except FileNotFoundError:
st.warning("Logo not found. Please ensure 'ThinkTiny.jpg' is in the same folder as app.py.")
# β
4. Connect to OpenAI
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
# β
5. Session Setup
if "prompt" not in st.session_state:
st.session_state.prompt = ""
# β
6. Sample Prompt
sample_prompt = (
"A highly detailed, realistic architectural floor plan for a modern tiny home. "
"The design features an open-concept layout with a multi-functional living space "
"that combines a compact living area, dining space, and efficient kitchen with smart storage. "
"A cozy loft bedroom is accessible via a sleek staircase or ladder. The minimalist bathroom "
"includes a shower. Emphasize large windows with natural light, clean lines, and neutral tones "
"with subtle accents. Annotate key dimensions and furniture placements. Professional architectural rendering style."
)
# === UI START ===
st.title("π AI Architecture Assistant")
st.caption("Design smarter. Visualize faster. Build better.")
# === 1. Prompt Input ===
st.markdown("### βοΈ Enter Your Floor Plan Prompt")
st.text_area("Prompt", key="prompt_input", value=st.session_state.prompt, height=200)
col1, col2 = st.columns(2)
with col1:
if st.button("Insert Sample Prompt"):
st.session_state.prompt = sample_prompt
st.rerun()
st.session_state.prompt = st.session_state.prompt_input
st.text_area("Current Prompt Being Used", st.session_state.prompt, height=200, disabled=True)
# === 2. Generate Image ===
st.markdown("### πΌοΈ Generate a Floor Plan Image")
if st.button("Generate Image"):
if st.session_state.prompt.strip():
with st.spinner("Generating image..."):
try:
response = client.images.generate(
model="dall-e-3",
prompt=st.session_state.prompt,
size="1024x1024",
quality="standard",
n=1
)
image_url = response.data[0].url
st.image(image_url, caption="Generated Floor Plan", use_column_width=True)
st.markdown(f"[Download Image]({image_url})", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error: {e}")
else:
st.warning("Please enter a valid prompt.")
# === 3. Recommend Materials ===
st.markdown("### π§± Recommended Building Materials")
if st.button("Get Material Recommendations"):
if st.session_state.prompt.strip():
with st.spinner("Analyzing design and recommending materials..."):
def generate_material_recommendations(prompt):
system_instruction = (
"You are a smart building material recommender. Based on the architectural prompt, "
"return a list of 5 to 10 building materials implied by the layout or concept. "
"Respond in clear, plain English using bullet points. Do not return JSON."
)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_instruction},
{"role": "user", "content": prompt}
],
temperature=0.7
)
return response.choices[0].message.content.strip()
result = generate_material_recommendations(st.session_state.prompt)
st.markdown(result)
else:
st.warning("Please enter a prompt first.")
st.markdown("### π° Cost Estimate by Region")
region = st.selectbox("Select a region in Canada:", [
"Alberta", "British Columbia", "Ontario", "Quebec", "Atlantic Canada", "Prairies"
])
if st.button("Get Cost Estimate"):
if st.session_state.prompt.strip():
with st.spinner("Calculating cost estimate..."):
def generate_cost_estimate(prompt, region):
system_instruction = (
"You are a residential construction cost estimator for Canadian regions. "
"Based on the given architectural prompt and selected region, estimate a typical low-to-high cost range "
"for building the described design. Mention 4β5 key cost categories. Use Canadian dollars. "
"Adjust prices to be realistic for the selected region, and keep your response brief and clear."
)
user_input = f"Region: {region}\n\nPrompt:\n{prompt}"
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_instruction},
{"role": "user", "content": user_input}
],
temperature=0.7
)
return response.choices[0].message.content.strip()
estimate = generate_cost_estimate(st.session_state.prompt, region)
st.markdown(estimate)
else:
st.warning("Please enter a prompt first.")
st.markdown("### ποΈ Building Code Comparison")
st.markdown("---")
st.markdown("### π§Ύ Building Code Comparison Between Provinces")
province_1 = st.selectbox("Select first province:", [
"British Columbia", "Alberta", "Ontario", "Quebec", "Atlantic Canada", "Prairies"
], key="prov1")
province_2 = st.selectbox("Select second province:", [
"British Columbia", "Alberta", "Ontario", "Quebec", "Atlantic Canada", "Prairies"
], key="prov2")
if st.button("Compare Building Codes"):
if province_1 != province_2:
with st.spinner("Comparing codes across provinces..."):
def compare_building_codes(p1, p2, prompt):
system_instruction = (
"You are a Canadian building code expert. Compare the key differences in building code requirements "
f"between {p1} and {p2} for residential construction, especially related to small or modern homes like the one described below. "
"Focus on differences in energy efficiency, foundations, insulation, accessibility, and design limitations. "
"Keep your response clear and under 10 bullet points."
)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_instruction},
{"role": "user", "content": prompt}
],
temperature=0.7
)
return response.choices[0].message.content.strip()
comparison = compare_building_codes(province_1, province_2, st.session_state.prompt)
st.markdown(f"### ποΈ {province_1} vs. {province_2}")
st.markdown(comparison)
else:
st.warning("Please select two different provinces.")
st.markdown("### β‘οΈ What would you like to do next?")
# === DESIGN IDEAS SECTION ===
st.markdown("### β‘οΈ What would you like to do next?")
next_step = st.selectbox(
"Now that you have some information and a layout in mind, would you like help with...",
[
"Select an option",
"π¨ Explore design ideas (color palettes, materials for your climate)",
"π Continue researching (codes, build types, regulations)"
]
)
if next_step == "π¨ Explore design ideas (color palettes, materials for your climate)":
st.markdown("#### π¨ Design Recommendations")
st.markdown("We'll give you smart and stylish ideas based on your region and layout.")
# Select region
design_region = st.selectbox("Where will your home be built?", [
"British Columbia", "Alberta", "Ontario", "Quebec", "Atlantic Canada", "Prairies"
], key="design_region")
# Select style
design_style = st.selectbox("What style do you like?", [
"Scandinavian", "Modern Minimalist", "Rustic Cabin", "Japandi", "West Coast Contemporary"
], key="design_style")
# Select design advice categories
selected_categories = st.multiselect(
"What kind of design advice would you like?",
[
"Climate-Responsive Material Suggestions",
"Interior Color Palette",
"Lighting & Window Placement Tips",
"Space-Saving Built-ins"
],
default=["Climate-Responsive Material Suggestions", "Interior Color Palette"]
)
# Generate design ideas with GPT
if st.button("Generate Design Ideas"):
with st.spinner("Designing your dream space..."):
def generate_design_ideas(prompt, region, style, categories):
system_instruction = (
"You are a residential design assistant. Based on the home description, region, and preferred design style, "
"give tailored recommendations for the selected categories. Keep it concise, stylish, and easy to implement for a small-scale home."
)
user_input = (
f"Prompt:\n{prompt}\n\n"
f"Region: {region}\n"
f"Style: {style}\n"
f"Categories: {', '.join(categories)}"
)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_instruction},
{"role": "user", "content": user_input}
],
temperature=0.7
)
return response.choices[0].message.content.strip()
design_results = generate_design_ideas(
st.session_state.prompt,
design_region,
design_style,
selected_categories
)
st.markdown("### π‘ Design Suggestions")
st.markdown(design_results)
# Store summary in session state
st.session_state.design_summary = {
"Prompt": st.session_state.prompt,
"Region": design_region,
"Style": design_style,
"Categories": selected_categories,
"Design Suggestions": design_results,
"Materials": st.session_state.get("material_recommendations", "Not generated"),
"Image URL": st.session_state.get("generated_image_url", "Not generated")
}
# === Download Summary ===
import io
st.markdown("---")
st.markdown("### π₯ Download Your Concept Summary")
if st.button("Download Summary as Text"):
summary = st.session_state.design_summary
content = f"""π AI Architecture Design Summary
Prompt:
{summary['Prompt']}
Region: {summary['Region']}
Style: {summary['Style']}
Selected Categories: {', '.join(summary['Categories'])}
π¨ Design Suggestions:
{summary['Design Suggestions']}
π§± Recommended Materials:
{summary['Materials']}
πΌοΈ Floor Plan Image:
{summary['Image URL']}
"""
st.download_button(
label="Download Summary",
data=io.StringIO(content),
file_name="design_summary.txt",
mime="text/plain"
)
# === Concept Image Generation ===
st.markdown("### πΌοΈ Visualizing Your Design Concept")
if st.button("Generate Concept Image from Design Summary"):
with st.spinner("Creating a personalized visual..."):
refined_prompt = (
f"Based on the following tiny home project details:\n\n"
f"Region: {design_region}\n"
f"Style: {design_style}\n"
f"Categories: {', '.join(selected_categories)}\n"
f"Design Suggestions: {st.session_state.design_summary['Design Suggestions']}\n\n"
"Create a professional architectural rendering that visually reflects this concept.\n"
"Focus on realistic materials, lighting, and color palette. Use a 3D rendering style with natural surroundings."
)
try:
response = client.images.generate(
model="dall-e-3",
prompt=refined_prompt,
size="1024x1024",
quality="standard",
n=1
)
concept_image_url = response.data[0].url
st.image(concept_image_url, caption="Generated Concept Image", use_column_width=True)
st.markdown(f"[Download Image]({concept_image_url})", unsafe_allow_html=True)
st.session_state.generated_concept_image_url = concept_image_url
except Exception as e:
st.error(f"Image generation failed: {e}")
if next_step == "π Continue researching (codes, build types, regulations)":
st.markdown("#### π Research Hub")
st.info("Here are some useful topics and tools to help you dig deeper before you build.")
st.markdown("##### π§ Suggested Topics to Explore")
research_topics = {
"Prefab vs. Traditional Construction": "Compare pros and cons of prefabricated (modular) vs. traditional stick-built homes.",
"Land Use & Zoning": "Understand how land use bylaws and zoning affect what and where you can build.",
"Permit & Code Requirements": "Find out what permits are typically needed for a small home project in Canada.",
"Sustainable Building Materials": "Explore environmentally-friendly materials that are affordable and effective.",
"Off-Grid Living Regulations": "Learn the legal considerations if you want to live off-grid.",
"Energy Efficiency Standards": "Understand how to meet or exceed Canadian energy code requirements."
}
selected_topic = st.selectbox("Choose a topic to learn more:", ["Select a topic"] + list(research_topics.keys()))
if selected_topic != "Select a topic":
with st.spinner("Researching..."):
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a Canadian construction research assistant."},
{"role": "user", "content": research_topics[selected_topic]}
],
temperature=0.7
)
st.markdown(f"### π {selected_topic}")
st.markdown(response.choices[0].message.content.strip())
st.markdown("##### π¬ Ask Your Own Research Question")
user_question = st.text_input("What else would you like to learn about?")
if st.button("Ask"):
if user_question:
with st.spinner("Getting the answer..."):
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You're a helpful Canadian homebuilding advisor. Keep answers clear and based on current standards."},
{"role": "user", "content": user_question}
],
temperature=0.7
)
st.markdown("### π‘ Answer")
st.markdown(response.choices[0].message.content.strip())
else:
st.warning("Please type a question first.")
# === Helpful Resource Links (shown no matter what) ===
st.markdown("##### π Helpful Resources")
st.markdown("""
- [National Building Code of Canada (2020)](https://nrc.canada.ca/en/certifications-evaluations-standards/codes-canada/codes-canada-publications/national-building-code-canada-2020)
- [BC Building Code](https://www.bccodes.ca/)
- [Alberta Building Codes & Standards](https://www.alberta.ca/building-codes-and-standards.aspx)
- [Ontario Building Code](https://www.ontario.ca/page/building-code)
- [Quebec Construction Code](https://www.rbq.gouv.qc.ca/en/technical-buildings/buildings/construction-code.html)
- [Tiny Home Legal Info (Canada)](https://tinyhousecanada.ca/)
""")
# === 9. Eco-Friendly Upgrades Agent ===
st.markdown("---")
st.markdown("### π± Suggest Eco-Friendly Upgrades")
if st.button("Get Eco-Friendly Suggestions"):
if st.session_state.prompt.strip():
with st.spinner("Analyzing your layout for green upgrades..."):
def suggest_eco_upgrades(prompt):
system_instruction = (
"You are a sustainability expert in residential architecture. "
"Based on the following home design prompt, suggest 5 to 7 eco-friendly upgrades. "
"Be specific and include options like energy efficiency, water conservation, material choices, and renewable energy use. "
"Avoid general adviceβtailor suggestions to the design and layout described."
)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": system_instruction},
{"role": "user", "content": prompt}
],
temperature=0.7
)
return response.choices[0].message.content.strip()
eco_suggestions = suggest_eco_upgrades(st.session_state.prompt)
st.markdown("### β
Recommended Eco-Friendly Features")
st.markdown(eco_suggestions)
# Save to session for summary
st.session_state.eco_suggestions = eco_suggestions
else:
st.warning("Please enter a prompt first.")
|