# borrowed from "https://github.com/marvis/pytorch-mobilenet" import torch.nn as nn import torch.nn.functional as F class MobileNetV1(nn.Module): def __init__(self, num_classes=1024): super(MobileNetV1, self).__init__() def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def conv_dw(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU(inplace=True), nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True), ) self.model = nn.Sequential( conv_bn(3, 32, 2), conv_dw(32, 64, 1), conv_dw(64, 128, 2), conv_dw(128, 128, 1), conv_dw(128, 256, 2), conv_dw(256, 256, 1), conv_dw(256, 512, 2), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 512, 1), conv_dw(512, 1024, 2), conv_dw(1024, 1024, 1), ) self.fc = nn.Linear(1024, num_classes) def forward(self, x): x = self.model(x) x = F.avg_pool2d(x, 7) x = x.view(-1, 1024) x = self.fc(x) return x