Spaces:
Runtime error
Runtime error
import torch | |
from torch.nn import Conv2d, Sequential, ModuleList, ReLU | |
from ..nn.mobilenet import MobileNetV1 | |
from .ssd import SSD | |
from .predictor import Predictor | |
from .config import mobilenetv1_ssd_config as config | |
def create_mobilenetv1_ssd(num_classes, is_test=False): | |
base_net = MobileNetV1(1001).model # disable dropout layer | |
source_layer_indexes = [ | |
12, | |
14, | |
] | |
extras = ModuleList([ | |
Sequential( | |
Conv2d(in_channels=1024, out_channels=256, kernel_size=1), | |
ReLU(), | |
Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1), | |
ReLU() | |
), | |
Sequential( | |
Conv2d(in_channels=512, out_channels=128, kernel_size=1), | |
ReLU(), | |
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1), | |
ReLU() | |
), | |
Sequential( | |
Conv2d(in_channels=256, out_channels=128, kernel_size=1), | |
ReLU(), | |
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1), | |
ReLU() | |
), | |
Sequential( | |
Conv2d(in_channels=256, out_channels=128, kernel_size=1), | |
ReLU(), | |
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1), | |
ReLU() | |
) | |
]) | |
regression_headers = ModuleList([ | |
Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1), | |
Conv2d(in_channels=1024, out_channels=6 * 4, kernel_size=3, padding=1), | |
Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1), | |
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), | |
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), | |
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0? | |
]) | |
classification_headers = ModuleList([ | |
Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1), | |
Conv2d(in_channels=1024, out_channels=6 * num_classes, kernel_size=3, padding=1), | |
Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1), | |
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), | |
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), | |
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0? | |
]) | |
return SSD(num_classes, base_net, source_layer_indexes, | |
extras, classification_headers, regression_headers, is_test=is_test, config=config) | |
def create_mobilenetv1_ssd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None): | |
predictor = Predictor(net, config.image_size, config.image_mean, | |
config.image_std, | |
nms_method=nms_method, | |
iou_threshold=config.iou_threshold, | |
candidate_size=candidate_size, | |
sigma=sigma, | |
device=device) | |
return predictor | |