SSD-Detection / vision /ssd /mobilenetv1_ssd.py
Kaori1707's picture
update application
5eff22e
import torch
from torch.nn import Conv2d, Sequential, ModuleList, ReLU
from ..nn.mobilenet import MobileNetV1
from .ssd import SSD
from .predictor import Predictor
from .config import mobilenetv1_ssd_config as config
def create_mobilenetv1_ssd(num_classes, is_test=False):
base_net = MobileNetV1(1001).model # disable dropout layer
source_layer_indexes = [
12,
14,
]
extras = ModuleList([
Sequential(
Conv2d(in_channels=1024, out_channels=256, kernel_size=1),
ReLU(),
Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1),
ReLU()
),
Sequential(
Conv2d(in_channels=512, out_channels=128, kernel_size=1),
ReLU(),
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
ReLU()
),
Sequential(
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
ReLU(),
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
ReLU()
),
Sequential(
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
ReLU(),
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
ReLU()
)
])
regression_headers = ModuleList([
Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
Conv2d(in_channels=1024, out_channels=6 * 4, kernel_size=3, padding=1),
Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0?
])
classification_headers = ModuleList([
Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
Conv2d(in_channels=1024, out_channels=6 * num_classes, kernel_size=3, padding=1),
Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1), # TODO: change to kernel_size=1, padding=0?
])
return SSD(num_classes, base_net, source_layer_indexes,
extras, classification_headers, regression_headers, is_test=is_test, config=config)
def create_mobilenetv1_ssd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None):
predictor = Predictor(net, config.image_size, config.image_mean,
config.image_std,
nms_method=nms_method,
iou_threshold=config.iou_threshold,
candidate_size=candidate_size,
sigma=sigma,
device=device)
return predictor