from src.langgraphagenticai.state.state import State class ChatbotWithToolNode: """ Chatbot logic enhanced with tool integration """ def __init__(self, model): self.llm = model def process(self, state: State) -> dict: """ Processes the input state and generates a response with tool integration. """ user_input = state["messages"] if state["messages"] else "" llm_response = self.llm.invoke([{"role": "user", "content": user_input}]) # Simulate tool-specific logic tools_response = f"Tool integration for: '{user_input}'" return {"messages": [llm_response, tools_response]} def create_chatbot(self, tools): """ Returns a chatbot node function. """ llm_with_tools = self.llm.bind_tools(tools) def chatbot_node(state: State): """ Chatbot logic for processing the input state and returning a response """ return {"messages": [llm_with_tools.invoke(state["messages"])]} return chatbot_node