Spaces:
Sleeping
Sleeping
import streamlit as st | |
import json | |
from src.langgraphagenticai.ui.streamlit.display_result import DisplayResultStreamlit | |
from src.langgraphagenticai.ui.streamlit.load_ui import LoadStreamlitUI | |
from src.langgraphagenticai.llms.groq_llm import GroqChatLLM | |
from src.langgraphagenticai.graph.graph_builder import GraphBuilder | |
# MAIN function start | |
def load_langgraph_agenticai_app(): | |
""" | |
Loads and runs the LangGraph AgenticAI application with Streamlit UI. | |
This function initializes the UI, handles user input, configures the | |
LLM model, sets up the graph based on the selected use case, and displays | |
the output while implementing exception handling for robustness. | |
""" | |
# Load UI | |
ui = LoadStreamlitUI() | |
user_input = ui.load_streamlit_ui() | |
if not user_input: | |
st.error("Error: Failed to load user input from the UI") | |
return | |
# Text input for user message | |
if st.session_state.IsFetchButtonClick: | |
user_message = st.session_state.timeframe | |
else: | |
user_message = st.chat_input("Enter your message") | |
if user_message: | |
try: | |
# Configure LLM | |
obj_llm_config = GroqChatLLM(user_controls_input=user_input) | |
model = obj_llm_config.get_llm_model() | |
if not model: | |
st.error("Error: LLM model could not be initialized") | |
return | |
# Initialize and set up the graph based on use case | |
usecase = user_input.get('selected_usecase') | |
if not usecase: | |
st.error("Error: No use case selected.") | |
return | |
## Graph builder | |
graph_builder = GraphBuilder(model) | |
try: | |
graph = graph_builder.setup_graph(usecase) | |
DisplayResultStreamlit(usecase, graph, user_message).display_result_in_ui() | |
except Exception as e: | |
st.error(f"Error: Graph setup failed {e}") | |
return | |
except Exception as e: | |
raise ValueError(f"Error Occurred with Exception: {e}") |