File size: 6,542 Bytes
8e8fe0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc302f5
8e8fe0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc302f5
 
 
8e8fe0d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import json

def transform_value(key, value):
    if isinstance(value, dict):
        if 'Value' in value and 'Unit' in value:
            value_type = "str" if isinstance(value['Value'], str) else "float"
            return {
                "key": key,
                "type": "dict",
                "value": [
                    {"key": "Value", "type": value_type, "value": value['Value']},
                    {"key": "Unit", "type": "str", "value": value['Unit']}
                ]
            }
        else:
            return {
                "key": key,
                "type": "dict",
                "value": [transform_value(k, v) for k, v in value.items()]
            }
    elif isinstance(value, list):
        return {
            "key": key,
            "type": "list",
            "value": [transform_value("", item) for item in value]
        }
    elif isinstance(value, str):
        return {
            "key": key,
            "type": "str",
            "value": value
        }
    else:
        raise ValueError(f"Unsupported value type: {type(value)}")

def my_json_to_kadi(data):
    return [transform_value(key, value) for key, value in data.items()]



# Print the output JSON in a formatted way

# Example JSON input
input_json = {
    "Material": {
        "Name": "LLTO",
        "Composition": "(Li,La)TiO-type",
        "Type": "Perovskite-type",
        "Properties": {
            "Ionic Conductivity": {"Value": "10^-3", "Unit": "S cm^-1"},
            "Chemical Stability": "",
            "Dendrite Formation Risk": "",
            "Operating Voltage": "",
            "Flexibility": "",
            "Processing": ""
        }
    },
    "Performance": {
        "Specific Capacity": {"Value": "", "Unit": ""},
        "Energy Density": {"Value": "", "Unit": ""},
        "Capacity Retention": "",
        "Operating Temperature": {"Value": "Room temperature", "Unit": ""}
    },
    "Usage": {
        "Battery Type": "",
        "Benefits": []
    }
}

# input_json = {
#     "Doctor_Patient_Discussion": {
#         "Initial_Observation": {
#             "Symptoms": [
#                 "pale",
#                 "sore throat",
#                 "running a temperature"
#             ],
#             "Initial_Assessment": "You\u2019ve moderate fever."
#         },
#         "Medical_Examination": {
#             "Temperature": "99.8",
#             "Blood_Pressure": "fine",
#             "Doctor_Assessment": "few symptoms of malaria",
#             "Diagnosis": "few symptoms of malaria"
#         },
#         "Treatment_Plan": {
#             "Prescription": [
#                 "three medicines",
#                 "a syrup"
#             ]
#         }
#     }
# }

# input_json = {
#     "Doctor_Patient_Discussion": {
#         "Initial_Observation": {
#             "Symptoms": [
#                 "pale",
#                 "sore throat",
#                 "running a temperature"
#             ],
#             "Initial_Assessment": "You\u2019ve moderate fever."
#         },
#         "Medical_Examination": {
#             "Temperature": "99.8",
#             "Blood_Pressure": "fine",
#             "Doctor_Assessment": "few symptoms of malaria",
#             "Diagnosis": "few symptoms of malaria"
#         },
#         "Treatment_Plan": {
#             "Prescription": [
#                 "three medicines",
#                 "a syrup"
#             ]
#         }
#     }
# }

input_json = {
  "Experiment": {
    "Material": "LATP powders",
    "SynthesisRoute": "modified sol-gel synthesis route described by (Bucharsky et al., 2015)",
    "Precursors": [
      {
        "Name": "lithium acetate Li(C2H3O2) ⋅2H2O",
        "Purity": "purity ≥ 99 %",
        "Supplier": "Alfa Aesar GmbH & Co KG",
        "Location": "Germany"
      },
      {
        "Name": "aluminum nitrate Al(NO3)3 ⋅9H2O",
        "Purity": "purity ≥ 98.5 %",
        "Supplier": "Merck KGaA",
        "Location": "Germany"
      },
      {
        "Name": "titanium-isopropoxide Ti[OCH(CH3)2]4",
        "Purity": "purity ≥ 98 %",
        "Supplier": "Merck KGaA",
        "Location": "Germany"
      }
    ],
    "Procedure": [
      {
        "Step": "Dissolve lithium acetate and aluminum nitrate in distilled water under constant stirring."
      },
      {
        "Step": "Add titanium-isopropoxide dropwise to the solution."
      },
      {
        "Step": "Add phosphoric acid slowly through a drip funnel to form a gel."
      },
      {
        "Step": "Dry the gel at room temperature for 24 h."
      }
    ],
    "HeatTreatment": [
      {
        "Step": "First, heat treat samples at 400°C for 6 h to achieve precursor formation and eliminate reaction gases."
      },
      {
        "Step": "Second, process samples at 900°C for 8 h to complete the reaction to crystalline LATP."
      }
    ],
    "BatchVariations": [
      {
        "Description": "Prepare one batch with all precursors in stoichiometric quantities (marked as 0.0 wt%)."
      },
      {
        "Description": "Explore different batches with either an excess up to +7.5 wt% or a deficiency up to -15.0 wt% of phosphoric acid compared to the stoichiometric composition."
      }
    ],
    "Processing": [
      {
        "Step": "Process the obtained powders in a planetary ball mill."
      },
      {
        "Step": "Form pellets by uniaxial pressing and then further densify by cold isostatic pressing at 400 MPa."
      },
      {
        "Step": "All pressed samples have a green density of approximately 62% relative density."
      }
    ],
    "Sintering": {
      "TemperatureRange": "850 to 1,050°C",
      "IsothermalSinteringTime": "30 to 540 min",
      "Cooling": "Cool down to room temperature in furnace",
      "DensityDetermination": "Determine densities by Archimedes’ method"
    },
    "IonicConductivityMeasurements": {
      "Method": "Impedance analysis",
      "Conditions": "At room temperature over the frequency range from 0.1 Hz to 1 MHz with an AC amplitude of 50 mV in the frequency response analyzer (AMTEK GmbH, VersaSTAT 4, Pennsylvania, United States)",
      "Reference": "For further details of the experimental part please refer to our previous work (Schiffmann et al., 2021)"
    }
  }
}


if __name__ == "__main__":
  # Transform the input JSON
  # output_json = transform_json2kadi(input_json)
  from kadi_apy.lib.conversion import json_to_kadi
  output_json = json_to_kadi(input_json)

  # Print the output JSON
  print(json.dumps(output_json, indent=2))