Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
-
from fastapi.responses import StreamingResponse
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from ultralytics import YOLO
|
@@ -7,27 +6,33 @@ import base64
|
|
7 |
import os
|
8 |
import shutil
|
9 |
import tempfile
|
10 |
-
import asyncio
|
11 |
|
12 |
# Initialize FastAPI app
|
13 |
app = FastAPI()
|
14 |
|
15 |
-
# Load YOLO model
|
16 |
model_path = "12x.pt"
|
17 |
if not os.path.exists(model_path):
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
model = YOLO(model_path)
|
21 |
|
22 |
def process_frame(frame):
|
23 |
"""Process a single frame with YOLO and return predictions."""
|
|
|
|
|
|
|
24 |
results = model(frame)
|
25 |
predictions = []
|
26 |
object_count = {}
|
27 |
|
28 |
for result in results:
|
29 |
for box in result.boxes:
|
30 |
-
|
|
|
|
|
31 |
predictions.append({
|
32 |
"class": class_name,
|
33 |
"confidence": float(box.conf),
|
@@ -39,48 +44,20 @@ def process_frame(frame):
|
|
39 |
|
40 |
return predictions, object_count
|
41 |
|
42 |
-
def encode_frame(frame):
|
43 |
-
"""Encode a frame as JPEG and return base64-encoded string."""
|
44 |
-
_, buffer = cv2.imencode('.jpg', frame)
|
45 |
-
return base64.b64encode(buffer).decode('utf-8')
|
46 |
-
|
47 |
-
@app.get("/video-stream/")
|
48 |
-
async def video_stream():
|
49 |
-
"""Endpoint to stream video frames with real-time object detection."""
|
50 |
-
cap = cv2.VideoCapture(0)
|
51 |
-
if not cap.isOpened():
|
52 |
-
return {"error": "Could not open webcam"}
|
53 |
-
|
54 |
-
async def generate():
|
55 |
-
while True:
|
56 |
-
ret, frame = cap.read()
|
57 |
-
if not ret:
|
58 |
-
break
|
59 |
-
|
60 |
-
predictions, _ = process_frame(frame)
|
61 |
-
|
62 |
-
# Draw bounding boxes
|
63 |
-
for pred in predictions:
|
64 |
-
x1, y1, x2, y2 = map(int, pred["bbox"])
|
65 |
-
label = f"{pred['class']} ({pred['confidence']:.2f})"
|
66 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
67 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
68 |
-
|
69 |
-
_, buffer = cv2.imencode('.jpg', frame)
|
70 |
-
yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + buffer.tobytes() + b'\r\n')
|
71 |
-
await asyncio.sleep(0.1) # Adjust frame rate
|
72 |
-
|
73 |
-
return StreamingResponse(generate(), media_type="multipart/x-mixed-replace; boundary=frame")
|
74 |
|
75 |
@app.post("/upload-image/")
|
76 |
async def upload_image(file: UploadFile = File(...)):
|
77 |
-
"""
|
|
|
|
|
|
|
78 |
contents = await file.read()
|
79 |
nparr = np.frombuffer(contents, np.uint8)
|
80 |
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
81 |
|
82 |
predictions, object_count = process_frame(img)
|
83 |
|
|
|
84 |
for pred in predictions:
|
85 |
x1, y1, x2, y2 = map(int, pred["bbox"])
|
86 |
label = f"{pred['class']} ({pred['confidence']:.2f})"
|
@@ -90,17 +67,25 @@ async def upload_image(file: UploadFile = File(...)):
|
|
90 |
_, buffer = cv2.imencode('.jpg', img)
|
91 |
img_base64 = base64.b64encode(buffer).decode('utf-8')
|
92 |
|
93 |
-
return {
|
|
|
|
|
|
|
|
|
94 |
|
95 |
@app.post("/upload-video/")
|
96 |
async def upload_video(file: UploadFile = File(...)):
|
97 |
-
"""
|
|
|
|
|
|
|
98 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
|
99 |
shutil.copyfileobj(file.file, temp_video)
|
100 |
temp_video_path = temp_video.name
|
101 |
|
102 |
cap = cv2.VideoCapture(temp_video_path)
|
103 |
if not cap.isOpened():
|
|
|
104 |
return {"error": "Could not open video file"}
|
105 |
|
106 |
frame_results = []
|
@@ -116,16 +101,18 @@ async def upload_video(file: UploadFile = File(...)):
|
|
116 |
predictions, object_count = process_frame(frame)
|
117 |
frame_results.append({
|
118 |
"frame_index": frame_index,
|
119 |
-
"object_count": object_count
|
|
|
120 |
})
|
121 |
|
122 |
frame_index += 1
|
123 |
|
124 |
cap.release()
|
125 |
-
os.remove(temp_video_path)
|
126 |
|
127 |
return {"video_results": frame_results}
|
128 |
|
|
|
129 |
@app.get("/")
|
130 |
def home():
|
131 |
-
return {"message": "
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from ultralytics import YOLO
|
|
|
6 |
import os
|
7 |
import shutil
|
8 |
import tempfile
|
|
|
9 |
|
10 |
# Initialize FastAPI app
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Load YOLO model safely
|
14 |
model_path = "12x.pt"
|
15 |
if not os.path.exists(model_path):
|
16 |
+
print(f"Warning: Model file '{model_path}' not found. API will not work properly.")
|
17 |
+
model = None # Handle model loading failure
|
18 |
+
else:
|
19 |
+
model = YOLO(model_path)
|
20 |
|
|
|
21 |
|
22 |
def process_frame(frame):
|
23 |
"""Process a single frame with YOLO and return predictions."""
|
24 |
+
if model is None:
|
25 |
+
return [], {}
|
26 |
+
|
27 |
results = model(frame)
|
28 |
predictions = []
|
29 |
object_count = {}
|
30 |
|
31 |
for result in results:
|
32 |
for box in result.boxes:
|
33 |
+
class_id = int(box.cls)
|
34 |
+
class_name = model.names.get(class_id, f"Unknown_{class_id}") # Handle missing class names
|
35 |
+
|
36 |
predictions.append({
|
37 |
"class": class_name,
|
38 |
"confidence": float(box.conf),
|
|
|
44 |
|
45 |
return predictions, object_count
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
@app.post("/upload-image/")
|
49 |
async def upload_image(file: UploadFile = File(...)):
|
50 |
+
"""Upload an image and get object detection results."""
|
51 |
+
if model is None:
|
52 |
+
return {"error": "Model not loaded. Please upload '12x.pt' to run detection."}
|
53 |
+
|
54 |
contents = await file.read()
|
55 |
nparr = np.frombuffer(contents, np.uint8)
|
56 |
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
57 |
|
58 |
predictions, object_count = process_frame(img)
|
59 |
|
60 |
+
# Draw bounding boxes on the image
|
61 |
for pred in predictions:
|
62 |
x1, y1, x2, y2 = map(int, pred["bbox"])
|
63 |
label = f"{pred['class']} ({pred['confidence']:.2f})"
|
|
|
67 |
_, buffer = cv2.imencode('.jpg', img)
|
68 |
img_base64 = base64.b64encode(buffer).decode('utf-8')
|
69 |
|
70 |
+
return {
|
71 |
+
"image": f"data:image/jpeg;base64,{img_base64}",
|
72 |
+
"object_count": object_count
|
73 |
+
}
|
74 |
+
|
75 |
|
76 |
@app.post("/upload-video/")
|
77 |
async def upload_video(file: UploadFile = File(...)):
|
78 |
+
"""Upload a video, process it frame by frame, and return detection results."""
|
79 |
+
if model is None:
|
80 |
+
return {"error": "Model not loaded. Please upload '12x.pt' to run detection."}
|
81 |
+
|
82 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
|
83 |
shutil.copyfileobj(file.file, temp_video)
|
84 |
temp_video_path = temp_video.name
|
85 |
|
86 |
cap = cv2.VideoCapture(temp_video_path)
|
87 |
if not cap.isOpened():
|
88 |
+
os.remove(temp_video_path)
|
89 |
return {"error": "Could not open video file"}
|
90 |
|
91 |
frame_results = []
|
|
|
101 |
predictions, object_count = process_frame(frame)
|
102 |
frame_results.append({
|
103 |
"frame_index": frame_index,
|
104 |
+
"object_count": object_count,
|
105 |
+
"detections": predictions
|
106 |
})
|
107 |
|
108 |
frame_index += 1
|
109 |
|
110 |
cap.release()
|
111 |
+
os.remove(temp_video_path) # Clean up temporary file
|
112 |
|
113 |
return {"video_results": frame_results}
|
114 |
|
115 |
+
|
116 |
@app.get("/")
|
117 |
def home():
|
118 |
+
return {"message": "Object Detection API for Images and Videos using 12x.pt"}
|