Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,11 +18,17 @@ REF_IMAGE_FACE_WIDTH = 120 # pixels
|
|
18 |
FOCAL_LENGTH = (REF_IMAGE_FACE_WIDTH * KNOWN_DISTANCE) / KNOWN_FACE_WIDTH
|
19 |
SCALING_FACTOR = 2.0 # Adjust based on real-world testing
|
20 |
|
|
|
|
|
|
|
|
|
21 |
# Function to Process Frame & Detect Faces
|
22 |
def process_frame(image: np.ndarray) -> List[Dict]:
|
|
|
23 |
results = model(image)
|
24 |
frame_width = image.shape[1]
|
25 |
-
|
|
|
26 |
|
27 |
for idx, result in enumerate(results):
|
28 |
for i, box in enumerate(result.boxes):
|
@@ -48,14 +54,34 @@ def process_frame(image: np.ndarray) -> List[Dict]:
|
|
48 |
else:
|
49 |
estimated_distance = -1 # Error case
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
return
|
59 |
|
60 |
@app.post("/detect")
|
61 |
async def detect_faces(file: UploadFile = File(...)):
|
|
|
18 |
FOCAL_LENGTH = (REF_IMAGE_FACE_WIDTH * KNOWN_DISTANCE) / KNOWN_FACE_WIDTH
|
19 |
SCALING_FACTOR = 2.0 # Adjust based on real-world testing
|
20 |
|
21 |
+
# Previous state storage
|
22 |
+
previous_people = {}
|
23 |
+
THRESHOLD_DISTANCE_CHANGE = 50 # cm
|
24 |
+
|
25 |
# Function to Process Frame & Detect Faces
|
26 |
def process_frame(image: np.ndarray) -> List[Dict]:
|
27 |
+
global previous_people
|
28 |
results = model(image)
|
29 |
frame_width = image.shape[1]
|
30 |
+
current_people = {}
|
31 |
+
detected_people = []
|
32 |
|
33 |
for idx, result in enumerate(results):
|
34 |
for i, box in enumerate(result.boxes):
|
|
|
54 |
else:
|
55 |
estimated_distance = -1 # Error case
|
56 |
|
57 |
+
person_id = f"person{i+1}"
|
58 |
+
current_people[person_id] = {
|
59 |
+
"distance": round(estimated_distance, 1),
|
60 |
+
"position": position
|
61 |
+
}
|
62 |
+
|
63 |
+
# Compare with previous state
|
64 |
+
if previous_people:
|
65 |
+
changes_detected = False
|
66 |
+
for person_id, data in current_people.items():
|
67 |
+
prev_data = previous_people.get(person_id)
|
68 |
+
if not prev_data or abs(prev_data["distance"] - data["distance"]) > THRESHOLD_DISTANCE_CHANGE or prev_data["position"] != data["position"]:
|
69 |
+
changes_detected = True
|
70 |
+
break
|
71 |
+
|
72 |
+
# Check if any person entered or left
|
73 |
+
if set(current_people.keys()) != set(previous_people.keys()):
|
74 |
+
changes_detected = True
|
75 |
+
|
76 |
+
if not changes_detected:
|
77 |
+
return []
|
78 |
+
|
79 |
+
previous_people = current_people.copy()
|
80 |
+
|
81 |
+
for person_id, data in current_people.items():
|
82 |
+
detected_people.append({person_id: data})
|
83 |
|
84 |
+
return detected_people
|
85 |
|
86 |
@app.post("/detect")
|
87 |
async def detect_faces(file: UploadFile = File(...)):
|