Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,20 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
from transformers import pipeline
|
5 |
from llama_cpp import Llama
|
6 |
-
import os
|
7 |
|
8 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
9 |
-
MODEL_PATH = "model.gguf" # Path to the downloaded model
|
10 |
BATCH_SIZE = 8
|
11 |
FILE_LIMIT_MB = 1000
|
12 |
|
13 |
device = 0 if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# Load the Llama model with specified context and threading
|
21 |
-
llm = Llama(model_path=MODEL_PATH, n_ctx=8000, n_threads=2, chat_format="chatml")
|
22 |
|
23 |
# Initialize the transcription pipeline
|
24 |
pipe = pipeline(
|
@@ -51,16 +47,15 @@ def transcribe(inputs, task):
|
|
51 |
|
52 |
# Function to generate SOAP notes using Llama model
|
53 |
def generate_soap(transcribed_text):
|
54 |
-
|
55 |
-
prompt
|
|
|
|
|
|
|
56 |
|
57 |
-
# Generate a response
|
58 |
-
|
59 |
-
response
|
60 |
-
for chunk in stream_response:
|
61 |
-
if "content" in chunk['choices'][0]["delta"]:
|
62 |
-
response += chunk['choices'][0]["delta"]["content"]
|
63 |
-
return response
|
64 |
|
65 |
# Gradio Interfaces for different inputs
|
66 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
from llama_cpp import Llama
|
|
|
6 |
|
7 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
|
|
8 |
BATCH_SIZE = 8
|
9 |
FILE_LIMIT_MB = 1000
|
10 |
|
11 |
device = 0 if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Load the Llama model directly from Hugging Face
|
14 |
+
llm = Llama.from_pretrained(
|
15 |
+
repo_id="MaziyarPanahi/Qwen2-7B-Instruct-GGUF",
|
16 |
+
filename="Qwen2-7B-Instruct.Q4_K_M.gguf"
|
17 |
+
)
|
|
|
|
|
18 |
|
19 |
# Initialize the transcription pipeline
|
20 |
pipe = pipeline(
|
|
|
47 |
|
48 |
# Function to generate SOAP notes using Llama model
|
49 |
def generate_soap(transcribed_text):
|
50 |
+
# Format the conversation for the Llama model
|
51 |
+
prompt = [
|
52 |
+
{"role": "system", "content": sys_prompt},
|
53 |
+
{"role": "user", "content": f"{task_prompt}\n{transcribed_text}"}
|
54 |
+
]
|
55 |
|
56 |
+
# Generate a response
|
57 |
+
response = llm.create_chat_completion(messages=prompt, temperature=0.7, max_tokens=2048)
|
58 |
+
return response["choices"][0]["message"]["content"]
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Gradio Interfaces for different inputs
|
61 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|