Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load the processor and model
|
7 |
+
processor = ViltProcessor.from_pretrained("MariaK/vilt_finetuned_200")
|
8 |
+
model = ViltForQuestionAnswering.from_pretrained("MariaK/vilt_finetuned_200")
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model.to(device)
|
11 |
+
|
12 |
+
def predict(image, question):
|
13 |
+
# prepare inputs
|
14 |
+
inputs = processor(image, question, return_tensors="pt").to(device)
|
15 |
+
|
16 |
+
# forward pass
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
logits = outputs.logits
|
21 |
+
idx = logits.argmax(-1).item()
|
22 |
+
predicted_answer = model.config.id2label[idx]
|
23 |
+
return predicted_answer
|
24 |
+
|
25 |
+
# Create the Gradio interface
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=[
|
29 |
+
gr.Image(type="pil"),
|
30 |
+
gr.Textbox(lines=1, placeholder="Enter your question here..."),
|
31 |
+
],
|
32 |
+
outputs="text",
|
33 |
+
title="Visual Question Answering with Fine-tuned Vilt",
|
34 |
+
description="Upload an image and ask a question about it!",
|
35 |
+
)
|
36 |
+
|
37 |
+
# Launch the interface
|
38 |
+
iface.launch(share=True) # Set share=True to share the space
|