Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
import json
|
4 |
-
import os
|
5 |
from difflib import SequenceMatcher
|
6 |
from jiwer import wer
|
7 |
import torchaudio
|
8 |
from transformers import pipeline
|
|
|
|
|
9 |
|
10 |
# Load metadata
|
11 |
with open("common_voice_en_validated_249_hf_ready.json") as f:
|
12 |
data = json.load(f)
|
13 |
|
14 |
-
#
|
15 |
ages = sorted(set(entry["age"] for entry in data))
|
16 |
genders = sorted(set(entry["gender"] for entry in data))
|
17 |
accents = sorted(set(entry["accent"] for entry in data))
|
18 |
|
19 |
-
# Load pipelines
|
20 |
-
device = 0
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def transcribe(pipe, file_path):
|
31 |
result = pipe(file_path)
|
@@ -35,62 +42,100 @@ def highlight_differences(ref, hyp):
|
|
35 |
sm = SequenceMatcher(None, ref.split(), hyp.split())
|
36 |
result = []
|
37 |
for opcode, i1, i2, j1, j2 in sm.get_opcodes():
|
38 |
-
if opcode ==
|
39 |
result.extend(hyp.split()[j1:j2])
|
40 |
-
|
41 |
wrong = hyp.split()[j1:j2]
|
42 |
result.extend([f"<span style='color:red'>{w}</span>" for w in wrong])
|
43 |
return " ".join(result)
|
44 |
|
45 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
filtered = [
|
47 |
entry for entry in data
|
48 |
if entry["age"] == age and entry["gender"] == gender and entry["accent"] == accent
|
49 |
]
|
50 |
if not filtered:
|
51 |
-
return "No matching sample."
|
52 |
-
|
53 |
sample = random.choice(filtered)
|
54 |
file_path = os.path.join("common_voice_en_validated_249", sample["path"])
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
with gr.Blocks() as demo:
|
74 |
-
gr.Markdown("# ASR
|
75 |
-
gr.Markdown("
|
|
|
|
|
|
|
76 |
|
77 |
with gr.Row():
|
78 |
age = gr.Dropdown(choices=ages, label="Age")
|
79 |
gender = gr.Dropdown(choices=genders, label="Gender")
|
80 |
accent = gr.Dropdown(choices=accents, label="Accent")
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
import json
|
|
|
4 |
from difflib import SequenceMatcher
|
5 |
from jiwer import wer
|
6 |
import torchaudio
|
7 |
from transformers import pipeline
|
8 |
+
import os
|
9 |
+
import string
|
10 |
|
11 |
# Load metadata
|
12 |
with open("common_voice_en_validated_249_hf_ready.json") as f:
|
13 |
data = json.load(f)
|
14 |
|
15 |
+
# Prepare dropdown options
|
16 |
ages = sorted(set(entry["age"] for entry in data))
|
17 |
genders = sorted(set(entry["gender"] for entry in data))
|
18 |
accents = sorted(set(entry["accent"] for entry in data))
|
19 |
|
20 |
+
# Load ASR pipelines
|
21 |
+
device = 0
|
22 |
+
pipe_whisper_medium = pipeline("automatic-speech-recognition", model="openai/whisper-medium", device=device, generate_kwargs={"language": "en"})
|
23 |
+
pipe_whisper_base = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device, generate_kwargs={"language": "en"})
|
24 |
+
pipe_whisper_tiny = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device, generate_kwargs={"language": "en"})
|
25 |
+
pipe_wav2vec2_base_960h = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=device)
|
26 |
+
pipe_hubert_large_ls960_ft = pipeline("automatic-speech-recognition", model="facebook/hubert-large-ls960-ft", device=device)
|
27 |
+
|
28 |
+
# Functions
|
29 |
+
def convert_to_wav(file_path):
|
30 |
+
wav_path = file_path.replace(".mp3", ".wav")
|
31 |
+
if not os.path.exists(wav_path):
|
32 |
+
waveform, sample_rate = torchaudio.load(file_path)
|
33 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
34 |
+
torchaudio.save(wav_path, waveform, sample_rate)
|
35 |
+
return wav_path
|
36 |
|
37 |
def transcribe(pipe, file_path):
|
38 |
result = pipe(file_path)
|
|
|
42 |
sm = SequenceMatcher(None, ref.split(), hyp.split())
|
43 |
result = []
|
44 |
for opcode, i1, i2, j1, j2 in sm.get_opcodes():
|
45 |
+
if opcode == "equal":
|
46 |
result.extend(hyp.split()[j1:j2])
|
47 |
+
else:
|
48 |
wrong = hyp.split()[j1:j2]
|
49 |
result.extend([f"<span style='color:red'>{w}</span>" for w in wrong])
|
50 |
return " ".join(result)
|
51 |
|
52 |
+
def normalize(text):
|
53 |
+
text = text.lower()
|
54 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
55 |
+
return text.strip()
|
56 |
+
|
57 |
+
# Generate Audio
|
58 |
+
def generate_audio(age, gender, accent):
|
59 |
filtered = [
|
60 |
entry for entry in data
|
61 |
if entry["age"] == age and entry["gender"] == gender and entry["accent"] == accent
|
62 |
]
|
63 |
if not filtered:
|
64 |
+
return None, "No matching sample."
|
|
|
65 |
sample = random.choice(filtered)
|
66 |
file_path = os.path.join("common_voice_en_validated_249", sample["path"])
|
67 |
+
wav_file_path = convert_to_wav(file_path)
|
68 |
+
return wav_file_path, wav_file_path
|
69 |
+
|
70 |
+
# Transcribe & Compare
|
71 |
+
def transcribe_audio(file_path):
|
72 |
+
if not file_path:
|
73 |
+
return "No file selected.", "", "", "", "", "", ""
|
74 |
+
|
75 |
+
filename_mp3 = os.path.basename(file_path).replace(".wav", ".mp3")
|
76 |
+
gold = ""
|
77 |
+
for entry in data:
|
78 |
+
if entry["path"].endswith(filename_mp3):
|
79 |
+
gold = normalize(entry["sentence"])
|
80 |
+
break
|
81 |
+
if not gold:
|
82 |
+
return "Reference not found.", "", "", "", "", "", ""
|
83 |
+
|
84 |
+
outputs = {}
|
85 |
+
models = {
|
86 |
+
"openai/whisper-medium": pipe_whisper_medium,
|
87 |
+
"openai/whisper-base": pipe_whisper_base,
|
88 |
+
"openai/whisper-tiny": pipe_whisper_tiny,
|
89 |
+
"facebook/wav2vec2-base-960h": pipe_wav2vec2_base_960h,
|
90 |
+
"facebook/hubert-large-ls960-ft": pipe_hubert_large_ls960_ft,
|
91 |
+
}
|
92 |
+
|
93 |
+
for name, model in models.items():
|
94 |
+
text = transcribe(model, file_path)
|
95 |
+
clean = normalize(text)
|
96 |
+
wer_score = wer(gold, clean)
|
97 |
+
outputs[name] = f"<b>{name} (WER: {wer_score:.2f}):</b><br>{highlight_differences(gold, clean)}"
|
98 |
+
|
99 |
+
return (gold, *outputs.values())
|
100 |
+
|
101 |
+
# Gradio Interface
|
102 |
with gr.Blocks() as demo:
|
103 |
+
gr.Markdown("# Comparing ASR Models on Diverse English Speech Samples")
|
104 |
+
gr.Markdown("
|
105 |
+
This demo compares the transcription performance of six automatic speech recognition (ASR) models on audio samples from English learners. "
|
106 |
+
"Users can select speaker metadata (age, gender, accent) to explore how models handle diverse speech profiles. "
|
107 |
+
"All samples are drawn from the validated subset (n=249) of the English dataset in the Common Voice Delta Segment 21.0 release.")
|
108 |
|
109 |
with gr.Row():
|
110 |
age = gr.Dropdown(choices=ages, label="Age")
|
111 |
gender = gr.Dropdown(choices=genders, label="Gender")
|
112 |
accent = gr.Dropdown(choices=accents, label="Accent")
|
113 |
|
114 |
+
generate_btn = gr.Button("Get Audio")
|
115 |
+
audio_output = gr.Audio(label="Audio", type="filepath", interactive=False)
|
116 |
+
file_path_output = gr.Textbox(label="Audio File Path", visible=False)
|
117 |
+
|
118 |
+
generate_btn.click(generate_audio, [age, gender, accent], [audio_output, file_path_output])
|
119 |
+
|
120 |
+
transcribe_btn = gr.Button("Transcribe with All Models")
|
121 |
+
gold_text = gr.Textbox(label="Reference (Gold Standard)")
|
122 |
+
whisper_medium_html = gr.HTML(label="Whisper Medium")
|
123 |
+
whisper_base_html = gr.HTML(label="Whisper Base")
|
124 |
+
whisper_tiny_html = gr.HTML(label="Whisper Tiny")
|
125 |
+
wav2vec_html = gr.HTML(label="Wav2Vec2 Base")
|
126 |
+
hubert_html = gr.HTML(label="HuBERT Large")
|
127 |
+
|
128 |
+
transcribe_btn.click(
|
129 |
+
transcribe_audio,
|
130 |
+
inputs=[file_path_output],
|
131 |
+
outputs=[
|
132 |
+
gold_text,
|
133 |
+
whisper_medium_html,
|
134 |
+
whisper_base_html,
|
135 |
+
whisper_tiny_html,
|
136 |
+
wav2vec_html,
|
137 |
+
hubert_html,
|
138 |
+
],
|
139 |
+
)
|
140 |
|
141 |
demo.launch()
|