Spaces:
Running
Running
Commit
·
96714cf
1
Parent(s):
3920bf8
added app file and requirements
Browse files- app.py +73 -3
- requirements.txt +9 -0
app.py
CHANGED
@@ -1,7 +1,77 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
+
from TTS.api import TTS
|
6 |
+
import moviepy.editor as mp
|
7 |
+
import numpy as np
|
8 |
+
import os
|
9 |
+
from PIL import Image
|
10 |
|
11 |
+
def estimate_chunk_durations(text, words_per_second=2.5, min_sec=5, max_sec=10):
|
12 |
+
words = text.split()
|
13 |
+
chunks = []
|
14 |
+
current_chunk = []
|
15 |
+
current_duration = 0
|
16 |
+
for word in words:
|
17 |
+
current_chunk.append(word)
|
18 |
+
current_duration += 1 / words_per_second
|
19 |
+
if current_duration >= min_sec:
|
20 |
+
if current_duration >= max_sec or len(current_chunk) > 20:
|
21 |
+
chunks.append(" ".join(current_chunk))
|
22 |
+
current_chunk = []
|
23 |
+
current_duration = 0
|
24 |
+
if current_chunk:
|
25 |
+
chunks.append(" ".join(current_chunk))
|
26 |
+
return chunks
|
27 |
+
|
28 |
+
def generate_speech(text):
|
29 |
+
tts = TTS("tts_models/en/ljspeech/tacotron2-DDC")
|
30 |
+
wav_path = "speech.wav"
|
31 |
+
tts.tts_to_file(text=text, file_path=wav_path)
|
32 |
+
return wav_path
|
33 |
+
|
34 |
+
def generate_images(chunks):
|
35 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
36 |
+
pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
image_paths = []
|
38 |
+
for i, chunk in enumerate(chunks):
|
39 |
+
image = pipe(chunk).images[0]
|
40 |
+
img_path = f"image_{i}.png"
|
41 |
+
image.save(img_path)
|
42 |
+
image_paths.append(img_path)
|
43 |
+
return image_paths
|
44 |
+
|
45 |
+
def create_video(images, durations, speech_path):
|
46 |
+
clips = [mp.ImageClip(img).set_duration(dur) for img, dur in zip(images, durations)]
|
47 |
+
black_start = mp.ColorClip((512, 512), color=(0,0,0), duration=1)
|
48 |
+
black_end = mp.ColorClip((512, 512), color=(0,0,0), duration=2)
|
49 |
+
video = mp.concatenate_videoclips([black_start] + clips + [black_end])
|
50 |
+
audio = mp.AudioFileClip(speech_path)
|
51 |
+
final_video = video.set_audio(audio)
|
52 |
+
final_video.write_videofile("output.mp4", fps=24)
|
53 |
+
return "output.mp4"
|
54 |
+
|
55 |
+
def process_text(text):
|
56 |
+
chunks = estimate_chunk_durations(text)
|
57 |
+
speech_path = generate_speech(text)
|
58 |
+
image_paths = generate_images(chunks)
|
59 |
+
durations = [min(10, max(5, len(chunk.split()) / 2.5)) for chunk in chunks]
|
60 |
+
video_path = create_video(image_paths, durations, speech_path)
|
61 |
+
return video_path
|
62 |
+
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("# Text-to-Video Generator using AI 🎥")
|
65 |
+
text_input = gr.Textbox(label="Enter your text")
|
66 |
+
file_input = gr.File(label="Or upload a .txt file")
|
67 |
+
process_btn = gr.Button("Generate Video")
|
68 |
+
output_video = gr.Video()
|
69 |
+
|
70 |
+
def handle_request(text, file):
|
71 |
+
if file is not None:
|
72 |
+
text = open(file.name, "r").read()
|
73 |
+
return process_text(text)
|
74 |
+
|
75 |
+
process_btn.click(handle_request, inputs=[text_input, file_input], outputs=output_video)
|
76 |
|
|
|
77 |
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchaudio
|
4 |
+
diffusers
|
5 |
+
transformers
|
6 |
+
TTS
|
7 |
+
moviepy
|
8 |
+
numpy
|
9 |
+
Pillow
|