Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
from huggingface_hub import AsyncInferenceClient | |
from translatepy import Translator | |
from gradio_client import Client, handle_file | |
from PIL import Image | |
from pathlib import Path | |
MAX_SEED = np.iinfo(np.int32).max | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN') | |
css2=""" | |
/* Apply dark theme (black background) */ | |
body { | |
background-color: #000000; | |
color: #FFFFFF; | |
} | |
/* Style the Gradio interface */ | |
.gradio-container { | |
background-color: #000000; | |
border: 2px solid #FFFFFF; | |
box-shadow: 0 0 10px rgba(255, 255, 255, 0.1); | |
} | |
/* Title and markdown text */ | |
.gradio-markdown h1, .gradio-markdown h2, .gradio-markdown h3 { | |
color: #FFFFFF; | |
} | |
/* Input boxes (e.g., Textbox) */ | |
.gradio-textbox input, .gradio-textbox textarea { | |
background-color: #222222; | |
color: #FFFFFF; | |
border: 2px solid #444444; | |
border-radius: 8px; | |
padding: 10px; | |
font-size: 16px; | |
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); | |
transition: 0.3s ease-in-out; | |
} | |
.gradio-textbox input:focus, .gradio-textbox textarea:focus { | |
border-color: #ff00ff; | |
box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); | |
} | |
/* Buttons */ | |
.gradio-button { | |
background: linear-gradient(45deg, #ff007f, #ff00ff, #00ff00, #00ffff, #0000ff, #ff8c00); | |
color: white; | |
font-weight: bold; | |
border: 2px solid #444444; | |
border-radius: 10px; | |
padding: 12px 20px; | |
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3); | |
cursor: pointer; | |
transition: 0.3s ease-in-out; | |
font-size: 16px; | |
text-transform: uppercase; | |
} | |
.gradio-button:hover { | |
background: linear-gradient(45deg, #ff8c00, #00ffff, #ff00ff, #ff007f, #0000ff, #00ff00); | |
box-shadow: 0 0 20px rgba(255, 255, 255, 0.5); | |
} | |
/* Dropdown */ | |
.gradio-dropdown select { | |
background-color: #222222; | |
color: #FFFFFF; | |
border: 2px solid #444444; | |
border-radius: 8px; | |
padding: 8px 12px; | |
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); | |
} | |
.gradio-dropdown select:focus { | |
border-color: #ff00ff; | |
box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); | |
} | |
/* Chatbot box */ | |
.gradio-chatbot { | |
background-color: #222222; | |
border: 2px solid #444444; | |
color: #FFFFFF; | |
padding: 15px; | |
border-radius: 12px; | |
box-shadow: 0 0 10px rgba(255, 255, 255, 0.2); | |
} | |
/* Slider */ | |
.gradio-slider input { | |
background-color: #222222; | |
border: 2px solid #444444; | |
color: #FFFFFF; | |
border-radius: 8px; | |
padding: 10px; | |
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2); | |
} | |
.gradio-slider input:focus { | |
border-color: #ff00ff; | |
box-shadow: 0 0 10px rgba(255, 0, 255, 0.7); | |
} | |
/* Accordion */ | |
.gradio-accordion { | |
background-color: #222222; | |
border: 2px solid #444444; | |
color: #FFFFFF; | |
padding: 15px; | |
border-radius: 12px; | |
box-shadow: 0 0 10px rgba(255, 255, 255, 0.2); | |
} | |
.gradio-accordion-button { | |
background-color: #444444; | |
color: #FFFFFF; | |
border: none; | |
border-radius: 8px; | |
padding: 8px 16px; | |
box-shadow: 0 0 5px rgba(255, 255, 255, 0.1); | |
transition: 0.3s ease-in-out; | |
} | |
.gradio-accordion-button:hover { | |
background-color: #ff00ff; | |
box-shadow: 0 0 15px rgba(255, 0, 255, 0.5); | |
} | |
/* General hover effect for all Gradio elements */ | |
.gradio-container *:hover { | |
box-shadow: 0 0 10px rgba(255, 255, 255, 0.5); | |
} | |
/* Animation for glowing neon effect */ | |
@keyframes neon { | |
0% { | |
text-shadow: 0 0 5px #ff0000, 0 0 10px #ff0000, 0 0 15px #ff0000, 0 0 20px #ff0000, 0 0 25px #ff0000, 0 0 30px #ff0000; | |
} | |
50% { | |
text-shadow: 0 0 5px #00ff00, 0 0 10px #00ff00, 0 0 15px #00ff00, 0 0 20px #00ff00, 0 0 25px #00ff00, 0 0 30px #00ff00; | |
} | |
100% { | |
text-shadow: 0 0 5px #0000ff, 0 0 10px #0000ff, 0 0 15px #0000ff, 0 0 20px #0000ff, 0 0 25px #0000ff, 0 0 30px #0000ff; | |
} | |
} | |
/* Apply glowing text effect */ | |
.gradio-container h1, .gradio-container h2, .gradio-container h3, .gradio-container p { | |
animation: neon 1.5s ease-in-out infinite alternate; | |
} | |
""" | |
# Define base models | |
base_models = [ | |
"black-forest-labs/FLUX.1-schnell", | |
"black-forest-labs/FLUX.1-DEV", | |
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro" | |
] | |
def load_local_loras(lora_directory="lora_models"): | |
"""Load loras from local safetensor files""" | |
loras_list_custom = [] | |
if not os.path.exists(lora_directory): | |
os.makedirs(lora_directory) | |
print(f"[-] Created lora directory: {lora_directory}") | |
lora_files = list(Path(lora_directory).glob("*.safetensors")) | |
for lora_file in lora_files: | |
lora_name = lora_file.stem | |
lora_path = str(lora_file.absolute()) | |
loras_list_custom.append({ | |
"name": lora_name, | |
"path": lora_path | |
}) | |
print(f"[-] Loaded {len(loras_list_custom)} local loras") | |
return loras_list_custom | |
# Function to enable LoRA if selected | |
def enable_lora(lora_path, basemodel): | |
print(f"[-] Determining model: LoRA {'enabled' if lora_path else 'disabled'}, base model: {basemodel}") | |
if not lora_path: | |
return basemodel | |
# Configure model with local lora | |
return { | |
"model": basemodel, | |
"lora_weights": lora_path, | |
"lora_scale": 0.75 # Adjust this value as needed | |
} | |
# Function to upscale image | |
def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
try: | |
print(f"[-] Starting upscaling process with factor {upscale_factor} for image {img_path}") | |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) | |
result = client.predict( | |
input_image=handle_file(img_path), | |
prompt=prompt, | |
negative_prompt="worst quality, low quality, normal quality", | |
upscale_factor=upscale_factor, | |
controlnet_scale=0.6, | |
controlnet_decay=1, | |
condition_scale=6, | |
denoise_strength=0.35, | |
num_inference_steps=18, | |
solver="DDIM", | |
api_name="/process" | |
) | |
print(f"[-] Upscaling successful.") | |
return result[1] # Return upscale image path | |
except Exception as e: | |
print(f"[-] Error scaling image: {e}") | |
return None | |
# Function to generate image | |
async def generate_image(prompt, model_config, lora_word, width, height, scales, steps, seed): | |
try: | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
print(f"[-] Translating prompt: {prompt}") | |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word | |
print(f"[-] Generating image with prompt: {text}") | |
client = AsyncInferenceClient(token=HF_TOKEN) | |
# Handle both simple model string and lora config | |
if isinstance(model_config, dict): | |
print(f"[-] Using model with LoRA: {model_config}") | |
image = await client.text_to_image( | |
prompt=text, | |
height=height, | |
width=width, | |
guidance_scale=scales, | |
num_inference_steps=steps, | |
model=model_config["model"], | |
lora_weights=model_config["lora_weights"], | |
lora_scale=model_config["lora_scale"] | |
) | |
else: | |
print(f"[-] Using base model: {model_config}") | |
image = await client.text_to_image( | |
prompt=text, | |
height=height, | |
width=width, | |
guidance_scale=scales, | |
num_inference_steps=steps, | |
model=model_config | |
) | |
return image, seed | |
except Exception as e: | |
print(f"[-] Error generating image: {e}") | |
return None, None | |
# Main function to generate images and optionally upscale | |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): | |
print(f"[-] Starting image generation with prompt: {prompt}") | |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel | |
print(f"[-] Using model: {model}") | |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) | |
if image is None: | |
print("[-] Image generation failed.") | |
return [] | |
image_path = "temp_image.jpg" | |
print(f"[-] Saving temporary image to: {image_path}") | |
image.save(image_path, format="JPEG") | |
upscale_image_path = None | |
if process_upscale: | |
print(f"[-] Processing upscaling with factor: {upscale_factor}") | |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) | |
if upscale_image_path is not None and os.path.exists(upscale_image_path): | |
print(f"[-] Upscaling complete. Image saved at: {upscale_image_path}") | |
return [image_path, upscale_image_path] # Return both images | |
else: | |
print("[-] Upscaling failed, upscaled image path not found.") | |
return [image_path] | |
# Load local loras | |
local_loras = load_local_loras() | |
# Creating Gradio interface | |
with gr.Blocks(css=css2, theme=IndonesiaTheme()) as WallpaperFluxMaker: | |
gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>') | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
output_res = gr.Gallery( | |
label="⚡ Flux / Upscaled Image ⚡", | |
elem_id="output-res", | |
columns=2, | |
height="auto" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, elem_id="col-left"): | |
prompt = gr.Textbox( | |
label="📜 Description", | |
placeholder="Write your prompt in any language, it will be translated to English.", | |
elem_id="textbox-prompt" | |
) | |
basemodel_choice = gr.Dropdown( | |
label="🖼️ Select Model", | |
choices=base_models, | |
value=base_models[0] | |
) | |
# Updated to use local lora paths | |
lora_model_choice = gr.Dropdown( | |
label="🎨 Select LoRA", | |
choices=[lora["path"] for lora in local_loras], | |
value=local_loras[0]["path"] if local_loras else None | |
) | |
process_lora = gr.Checkbox(label="🎨 Enable LoRA") | |
process_upscale = gr.Checkbox(label="🔍 Enable Upscaling") | |
upscale_factor = gr.Radio( | |
label="🔍 Upscale Factor", | |
choices=[2, 4, 8], | |
value=2 | |
) | |
with gr.Column(scale=1, elem_id="col-right"): | |
with gr.Accordion(label="⚙️ Advanced Options", open=True): | |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) | |
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768) | |
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8) | |
seed = gr.Number(label="Seed", value=-1) | |
btn = gr.Button("🚀 Generate Image", elem_id="generate-btn") | |
btn.click( | |
fn=gen, | |
inputs=[ | |
prompt, basemodel_choice, width, height, scales, steps, seed, | |
upscale_factor, process_upscale, lora_model_choice, process_lora | |
], | |
outputs=output_res | |
) | |
WallpaperFluxMaker.queue(api_open=True).launch(show_api=True) |