viser_train1 / vis_st4rtrack.py
Junyi42's picture
code
4d1a850
"""Record3D visualizer
Parse and stream record3d captures. To get the demo data, see `./assets/download_record3d_dance.sh`.
"""
import time
from pathlib import Path
import numpy as onp
import tyro
import cv2
from tqdm.auto import tqdm
import viser
import viser.extras
import viser.transforms as tf
from glob import glob
import numpy as np
import imageio.v3 as iio
import matplotlib.pyplot as plt
import psutil
def log_memory_usage(message=""):
"""Log current memory usage with an optional message."""
process = psutil.Process()
memory_info = process.memory_info()
memory_mb = memory_info.rss / (1024 * 1024) # Convert to MB
print(f"Memory usage {message}: {memory_mb:.2f} MB")
def load_trajectory_data(traj_path="results", use_float16=True, max_frames=None, mask_folder='./train', conf_thre_percentile=10):
"""Load trajectory data from files.
Args:
traj_path: Path to the directory containing trajectory data
use_float16: Whether to convert data to float16 to save memory
max_frames: Maximum number of frames to load (None for all)
mask_folder: Path to the directory containing mask images
Returns:
A dictionary containing loaded data
"""
log_memory_usage("before loading data")
data_cache = {
'traj_3d_head1': None,
'traj_3d_head2': None,
'conf_mask_head1': None,
'conf_mask_head2': None,
'masks': None,
'raw_video': None,
'loaded': False
}
# Load masks
masks_paths = sorted(glob(mask_folder + '/*.jpg'))
masks = None
if masks_paths:
masks = [iio.imread(p) for p in masks_paths]
masks = np.stack(masks, axis=0)
# Convert masks to binary (0 or 1)
masks = (masks < 1).astype(np.float32)
masks = masks.sum(axis=-1) > 2 # Combine all channels, True where any channel was 1
print(f"Original masks shape: {masks.shape}")
else:
print("No masks found. Will create default masks when needed.")
data_cache['masks'] = masks
if Path(traj_path).is_dir():
# Find all trajectory files
traj_3d_paths_head1 = sorted(glob(traj_path + '/pts3d1_p*.npy'),
key=lambda x: int(x.split('_p')[-1].split('.')[0]))
conf_paths_head1 = sorted(glob(traj_path + '/conf1_p*.npy'),
key=lambda x: int(x.split('_p')[-1].split('.')[0]))
traj_3d_paths_head2 = sorted(glob(traj_path + '/pts3d2_p*.npy'),
key=lambda x: int(x.split('_p')[-1].split('.')[0]))
conf_paths_head2 = sorted(glob(traj_path + '/conf2_p*.npy'),
key=lambda x: int(x.split('_p')[-1].split('.')[0]))
# Limit number of frames if specified
if max_frames is not None:
traj_3d_paths_head1 = traj_3d_paths_head1[:max_frames]
conf_paths_head1 = conf_paths_head1[:max_frames] if conf_paths_head1 else []
traj_3d_paths_head2 = traj_3d_paths_head2[:max_frames]
conf_paths_head2 = conf_paths_head2[:max_frames] if conf_paths_head2 else []
# Process head1
if traj_3d_paths_head1:
if use_float16:
traj_3d_head1 = onp.stack([onp.load(p).astype(onp.float16) for p in traj_3d_paths_head1], axis=0)
else:
traj_3d_head1 = onp.stack([onp.load(p) for p in traj_3d_paths_head1], axis=0)
log_memory_usage("after loading head1 data")
h, w, _ = traj_3d_head1.shape[1:]
num_frames = traj_3d_head1.shape[0]
# If masks is None, create default masks (all ones)
if masks is None:
masks = np.ones((num_frames, h, w), dtype=bool)
print(f"Created default masks with shape: {masks.shape}")
data_cache['masks'] = masks
else:
# Resize masks to match trajectory dimensions using nearest neighbor interpolation
masks_resized = np.zeros((masks.shape[0], h, w), dtype=bool)
for i in range(masks.shape[0]):
masks_resized[i] = cv2.resize(
masks[i].astype(np.uint8),
(w, h),
interpolation=cv2.INTER_NEAREST
).astype(bool)
print(f"Resized masks shape: {masks_resized.shape}")
data_cache['masks'] = masks_resized
# Reshape trajectory data
traj_3d_head1 = traj_3d_head1.reshape(traj_3d_head1.shape[0], -1, 6)
data_cache['traj_3d_head1'] = traj_3d_head1
if conf_paths_head1:
conf_head1 = onp.stack([onp.load(p).astype(onp.float16) for p in conf_paths_head1], axis=0)
conf_head1 = conf_head1.reshape(conf_head1.shape[0], -1)
conf_head1 = conf_head1.mean(axis=0)
# repeat the conf_head1 to match the number of frames in the dimension 0
conf_head1 = np.tile(conf_head1, (num_frames, 1))
# Convert to float32 before calculating percentile to avoid overflow
conf_thre = np.percentile(conf_head1.astype(np.float32), conf_thre_percentile) # Default percentile
conf_mask_head1 = conf_head1 > conf_thre
data_cache['conf_mask_head1'] = conf_mask_head1
# Process head2
if traj_3d_paths_head2:
if use_float16:
traj_3d_head2 = onp.stack([onp.load(p).astype(onp.float16) for p in traj_3d_paths_head2], axis=0)
else:
traj_3d_head2 = onp.stack([onp.load(p) for p in traj_3d_paths_head2], axis=0)
log_memory_usage("after loading head2 data")
# Store raw video data
raw_video = traj_3d_head2[:, :, :, 3:6] # [num_frames, h, w, 3]
data_cache['raw_video'] = raw_video
traj_3d_head2 = traj_3d_head2.reshape(traj_3d_head2.shape[0], -1, 6)
data_cache['traj_3d_head2'] = traj_3d_head2
if conf_paths_head2:
conf_head2 = onp.stack([onp.load(p).astype(onp.float16) for p in conf_paths_head2], axis=0)
conf_head2 = conf_head2.reshape(conf_head2.shape[0], -1)
# set conf thre to be 1 percentile of the conf_head2, for each frame
conf_thre = np.percentile(conf_head2.astype(np.float32), conf_thre_percentile, axis=1)
conf_mask_head2 = conf_head2 > conf_thre[:, None]
data_cache['conf_mask_head2'] = conf_mask_head2
data_cache['loaded'] = True
log_memory_usage("after loading all data")
return data_cache
def visualize_st4rtrack(
traj_path: str = "results",
up_dir: str = "-z", # should be +z or -z
max_frames: int = 100,
share: bool = False,
point_size: float = 0.005,
downsample_factor: int = 3,
num_traj_points: int = 100,
conf_thre_percentile: float = 1,
traj_end_frame: int = 100,
traj_start_frame: int = 0,
traj_line_width: float = 3.,
fixed_length_traj: int = 20,
server: viser.ViserServer = None,
use_float16: bool = True,
preloaded_data: dict = None, # Add this parameter to accept preloaded data
color_code: str = "jet",
# Updated hex colors: #002676 for blue and #FDB515 for red/gold
blue_rgb: tuple[float, float, float] = (0.0, 0.149, 0.463), # #002676
red_rgb: tuple[float, float, float] = (0.769, 0.510, 0.055), # #FDB515
blend_ratio: float = 0.7,
mask_folder: str = None,
mid_anchor: bool = False,
video_width: int = 320, # Video display width
video_height: int = 180, # Video display height
camera_position: tuple[float, float, float] = (1e-3, 1.5, -0.2),
) -> None:
log_memory_usage("at start of visualization")
if server is None:
server = viser.ViserServer()
if share:
server.request_share_url()
@server.on_client_connect
def _(client: viser.ClientHandle) -> None:
client.camera.position = camera_position
client.camera.look_at = (0, 0, 0)
# Configure the GUI panel size and layout
server.gui.configure_theme(
control_layout="collapsible",
control_width="small",
dark_mode=False,
show_logo=False,
show_share_button=True
)
# Add video preview to the GUI panel - placed at the top
video_preview = server.gui.add_image(
np.zeros((video_height, video_width, 3), dtype=np.uint8), # Initial blank image
format="jpeg"
)
# Use preloaded data if available
if preloaded_data and preloaded_data.get('loaded', False):
traj_3d_head1 = preloaded_data.get('traj_3d_head1')
traj_3d_head2 = preloaded_data.get('traj_3d_head2')
conf_mask_head1 = preloaded_data.get('conf_mask_head1')
conf_mask_head2 = preloaded_data.get('conf_mask_head2')
masks = preloaded_data.get('masks')
raw_video = preloaded_data.get('raw_video')
print("Using preloaded data!")
else:
# Load data using the shared function
print("No preloaded data available, loading from files...")
data = load_trajectory_data(traj_path, use_float16, max_frames, mask_folder, conf_thre_percentile)
traj_3d_head1 = data.get('traj_3d_head1')
traj_3d_head2 = data.get('traj_3d_head2')
conf_mask_head1 = data.get('conf_mask_head1')
conf_mask_head2 = data.get('conf_mask_head2')
masks = data.get('masks')
raw_video = data.get('raw_video')
def process_video_frame(frame_idx):
if raw_video is None:
return np.zeros((video_height, video_width, 3), dtype=np.uint8)
# Get the original frame
raw_frame = raw_video[frame_idx]
# Adjust value range to 0-255
if raw_frame.max() <= 1.0:
frame = (raw_frame * 255).astype(np.uint8)
else:
frame = raw_frame.astype(np.uint8)
# Resize to fit the preview window
h, w = frame.shape[:2]
# Calculate size while maintaining aspect ratio
if h/w > video_height/video_width: # Height limited
new_h = video_height
new_w = int(w * (new_h / h))
else: # Width limited
new_w = video_width
new_h = int(h * (new_w / w))
# Resize
resized_frame = cv2.resize(frame, (new_w, new_h), interpolation=cv2.INTER_AREA)
# Create a black background
display_frame = np.zeros((video_height, video_width, 3), dtype=np.uint8)
# Place the resized frame in the center
y_offset = (video_height - new_h) // 2
x_offset = (video_width - new_w) // 2
display_frame[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized_frame
return display_frame
server.scene.set_up_direction(up_dir)
print("Setting up visualization!")
# Add visualization controls
with server.gui.add_folder("Visualization"):
gui_show_head1 = server.gui.add_checkbox("Tracking Points", True)
gui_show_head2 = server.gui.add_checkbox("Recon Points", True)
gui_show_trajectories = server.gui.add_checkbox("Trajectories", True)
gui_use_color_tint = server.gui.add_checkbox("Use Color Tint", True)
# Process and center point clouds
center_point = None
if traj_3d_head1 is not None:
xyz_head1 = traj_3d_head1[:, :, :3]
rgb_head1 = traj_3d_head1[:, :, 3:6]
if center_point is None:
center_point = onp.mean(xyz_head1, axis=(0, 1), keepdims=True)
xyz_head1 -= center_point
if rgb_head1.sum(axis=(-1)).max() > 125:
rgb_head1 /= 255.0
if traj_3d_head2 is not None:
xyz_head2 = traj_3d_head2[:, :, :3]
rgb_head2 = traj_3d_head2[:, :, 3:6]
if center_point is None:
center_point = onp.mean(xyz_head2, axis=(0, 1), keepdims=True)
xyz_head2 -= center_point
if rgb_head2.sum(axis=(-1)).max() > 125:
rgb_head2 /= 255.0
# Determine number of frames
F = max(
traj_3d_head1.shape[0] if traj_3d_head1 is not None else 0,
traj_3d_head2.shape[0] if traj_3d_head2 is not None else 0
)
num_frames = min(max_frames, F)
traj_end_frame = min(traj_end_frame, num_frames)
print(f"Number of frames: {num_frames}")
xyz_head1 = xyz_head1[:num_frames]
xyz_head2 = xyz_head2[:num_frames]
rgb_head1 = rgb_head1[:num_frames]
rgb_head2 = rgb_head2[:num_frames]
# Add playback UI.
with server.gui.add_folder("Playback"):
gui_timestep = server.gui.add_slider(
"Timestep",
min=0,
max=num_frames - 1,
step=1,
initial_value=0,
disabled=True,
)
gui_next_frame = server.gui.add_button("Next Frame", disabled=True)
gui_prev_frame = server.gui.add_button("Prev Frame", disabled=True)
gui_playing = server.gui.add_checkbox("Playing", True)
gui_framerate = server.gui.add_slider(
"FPS", min=1, max=60, step=0.1, initial_value=20
)
gui_framerate_options = server.gui.add_button_group(
"FPS options", ("10", "20", "30")
)
gui_show_all_frames = server.gui.add_checkbox("Show all frames", False)
gui_stride = server.gui.add_slider(
"Stride",
min=1,
max=num_frames,
step=1,
initial_value=5,
disabled=True, # Initially disabled
)
# Frame step buttons.
@gui_next_frame.on_click
def _(_) -> None:
gui_timestep.value = (gui_timestep.value + 1) % num_frames
@gui_prev_frame.on_click
def _(_) -> None:
gui_timestep.value = (gui_timestep.value - 1) % num_frames
# Disable frame controls when we're playing.
@gui_playing.on_update
def _(_) -> None:
gui_timestep.disabled = gui_playing.value or gui_show_all_frames.value
gui_next_frame.disabled = gui_playing.value or gui_show_all_frames.value
gui_prev_frame.disabled = gui_playing.value or gui_show_all_frames.value
# Set the framerate when we click one of the options.
@gui_framerate_options.on_click
def _(_) -> None:
gui_framerate.value = int(gui_framerate_options.value)
prev_timestep = gui_timestep.value
# Toggle frame visibility when the timestep slider changes.
@gui_timestep.on_update
def _(_) -> None:
nonlocal prev_timestep
current_timestep = gui_timestep.value
if not gui_show_all_frames.value:
with server.atomic():
if gui_show_head1.value:
frame_nodes_head1[current_timestep].visible = True
frame_nodes_head1[prev_timestep].visible = False
if gui_show_head2.value:
frame_nodes_head2[current_timestep].visible = True
frame_nodes_head2[prev_timestep].visible = False
prev_timestep = current_timestep
server.flush() # Optional!
# Show or hide all frames based on the checkbox.
@gui_show_all_frames.on_update
def _(_) -> None:
gui_stride.disabled = not gui_show_all_frames.value # Enable/disable stride slider
if gui_show_all_frames.value:
# Show frames with stride
stride = gui_stride.value
with server.atomic():
for i, (node1, node2) in enumerate(zip(frame_nodes_head1, frame_nodes_head2)):
node1.visible = gui_show_head1.value and (i % stride == 0)
node2.visible = gui_show_head2.value and (i % stride == 0)
# Disable playback controls
gui_playing.disabled = True
gui_timestep.disabled = True
gui_next_frame.disabled = True
gui_prev_frame.disabled = True
else:
# Show only the current frame
current_timestep = gui_timestep.value
with server.atomic():
for i, (node1, node2) in enumerate(zip(frame_nodes_head1, frame_nodes_head2)):
node1.visible = gui_show_head1.value and (i == current_timestep)
node2.visible = gui_show_head2.value and (i == current_timestep)
# Re-enable playback controls
gui_playing.disabled = False
gui_timestep.disabled = gui_playing.value
gui_next_frame.disabled = gui_playing.value
gui_prev_frame.disabled = gui_playing.value
# Update frame visibility when the stride changes.
@gui_stride.on_update
def _(_) -> None:
if gui_show_all_frames.value:
# Update frame visibility based on new stride
stride = gui_stride.value
with server.atomic():
for i, (node1, node2) in enumerate(zip(frame_nodes_head1, frame_nodes_head2)):
node1.visible = gui_show_head1.value and (i % stride == 0)
node2.visible = gui_show_head2.value and (i % stride == 0)
# Load in frames.
server.scene.add_frame(
"/frames",
wxyz=tf.SO3.exp(onp.array([onp.pi / 2.0, 0.0, 0.0])).wxyz,
position=(0, 0, 0),
show_axes=False,
)
frame_nodes_head1: list[viser.FrameHandle] = []
frame_nodes_head2: list[viser.FrameHandle] = []
# Extract RGB components for tinting
blue_r, blue_g, blue_b = blue_rgb
red_r, red_g, red_b = red_rgb
# Create frames for each timestep
frame_nodes_head1 = []
frame_nodes_head2 = []
for i in tqdm(range(num_frames)):
# Process head1
if traj_3d_head1 is not None:
frame_nodes_head1.append(server.scene.add_frame(f"/frames/t{i}/head1", show_axes=False))
position = xyz_head1[i]
color = rgb_head1[i]
if conf_mask_head1 is not None:
position = position[conf_mask_head1[i]]
color = color[conf_mask_head1[i]]
# Add point cloud for head1 with optional blue tint
color_head1 = color.copy()
if gui_use_color_tint.value:
color_head1 *= blend_ratio
color_head1[:, 0] = onp.clip(color_head1[:, 0] + blue_r * (1 - blend_ratio), 0, 1) # R
color_head1[:, 1] = onp.clip(color_head1[:, 1] + blue_g * (1 - blend_ratio), 0, 1) # G
color_head1[:, 2] = onp.clip(color_head1[:, 2] + blue_b * (1 - blend_ratio), 0, 1) # B
server.scene.add_point_cloud(
name=f"/frames/t{i}/head1/point_cloud",
points=position[::downsample_factor],
colors=color_head1[::downsample_factor],
point_size=point_size,
point_shape="rounded",
)
# Process head2
if traj_3d_head2 is not None:
frame_nodes_head2.append(server.scene.add_frame(f"/frames/t{i}/head2", show_axes=False))
position = xyz_head2[i]
color = rgb_head2[i]
if conf_mask_head2 is not None:
position = position[conf_mask_head2[i]]
color = color[conf_mask_head2[i]]
# Add point cloud for head2 with optional red tint
color_head2 = color.copy()
if gui_use_color_tint.value:
color_head2 *= blend_ratio
color_head2[:, 0] = onp.clip(color_head2[:, 0] + red_r * (1 - blend_ratio), 0, 1) # R
color_head2[:, 1] = onp.clip(color_head2[:, 1] + red_g * (1 - blend_ratio), 0, 1) # G
color_head2[:, 2] = onp.clip(color_head2[:, 2] + red_b * (1 - blend_ratio), 0, 1) # B
server.scene.add_point_cloud(
name=f"/frames/t{i}/head2/point_cloud",
points=position[::downsample_factor],
colors=color_head2[::downsample_factor],
point_size=point_size,
point_shape="rounded",
)
# Update visibility based on checkboxes
@gui_show_head1.on_update
def _(_) -> None:
with server.atomic():
for frame_node in frame_nodes_head1:
frame_node.visible = gui_show_head1.value and (
gui_show_all_frames.value
or (not gui_show_all_frames.value )
)
@gui_show_head2.on_update
def _(_) -> None:
with server.atomic():
for frame_node in frame_nodes_head2:
frame_node.visible = gui_show_head2.value and (
gui_show_all_frames.value
or (not gui_show_all_frames.value )
)
# Initial visibility
for i, (node1, node2) in enumerate(zip(frame_nodes_head1, frame_nodes_head2)):
if gui_show_all_frames.value:
node1.visible = gui_show_head1.value and (i % gui_stride.value == 0)
node2.visible = gui_show_head2.value and (i % gui_stride.value == 0)
else:
node1.visible = gui_show_head1.value and (i == gui_timestep.value)
node2.visible = gui_show_head2.value and (i == gui_timestep.value)
# Process and visualize trajectories for head1
if traj_3d_head1 is not None:
# Get points over time
xyz_head1_centered = xyz_head1.copy()
# Select points to visualize
num_points = xyz_head1.shape[1]
points_to_visualize = min(num_points, num_traj_points)
# Get the mask for the first frame and reshape it to match point cloud dimensions
if mid_anchor:
first_frame_mask = masks[num_frames//2].reshape(-1)
else:
first_frame_mask = masks[0].reshape(-1) #[#points, h]
# Calculate trajectory lengths for each point
trajectories = xyz_head1_centered[traj_start_frame:traj_end_frame] # Shape: (num_frames, num_points, 3)
traj_diffs = np.diff(trajectories, axis=0) # Differences between consecutive frames
traj_lengths = np.sum(np.sqrt(np.sum(traj_diffs**2, axis=-1)), axis=0) # Sum of distances for each point
# Get points that are within the mask
valid_indices = np.where(first_frame_mask)[0]
if len(valid_indices) > 0:
# Calculate average trajectory length for masked points
masked_traj_lengths = traj_lengths[valid_indices]
avg_traj_length = np.mean(masked_traj_lengths)
if mask_folder is not None:
# do not filter points by trajectory length
long_traj_indices = valid_indices
else:
# Filter points by trajectory length
long_traj_indices = valid_indices[masked_traj_lengths >= avg_traj_length]
# Randomly sample from the filtered points
if len(long_traj_indices) > 0:
# Random sampling without replacement
selected_indices = np.random.choice(
len(long_traj_indices),
min(points_to_visualize, len(long_traj_indices)),
replace=False
)
# Get the actual indices in their original order
valid_point_indices = long_traj_indices[np.sort(selected_indices)]
else:
valid_point_indices = np.array([])
else:
valid_point_indices = np.array([])
if len(valid_point_indices) > 0:
# Get trajectories for all valid points
trajectories = xyz_head1_centered[traj_start_frame:traj_end_frame, valid_point_indices]
N_point = trajectories.shape[1]
if color_code == "rainbow":
point_colors = plt.cm.rainbow(np.linspace(0, 1, N_point))[:, :3]
elif color_code == "jet":
point_colors = plt.cm.jet(np.linspace(0, 1, N_point))[:, :3]
# Modify the loop to handle frames less than fixed_length_traj
for i in range(traj_end_frame - traj_start_frame):
# Calculate the actual trajectory length for this frame
actual_length = min(fixed_length_traj, i + 1)
if actual_length > 1: # Need at least 2 points to form a line
# Get the appropriate slice of trajectory data
start_idx = max(0, i - actual_length + 1)
end_idx = i + 1
# Create line segments between consecutive frames
traj_slice = trajectories[start_idx:end_idx]
line_points = np.stack([traj_slice[:-1], traj_slice[1:]], axis=2)
line_points = line_points.reshape(-1, 2, 3)
# Create corresponding colors
line_colors = np.tile(point_colors, (actual_length-1, 1))
line_colors = np.stack([line_colors, line_colors], axis=1)
# Add line segments
server.scene.add_line_segments(
name=f"/frames/t{i+traj_start_frame}/head1/trajectory",
points=line_points,
colors=line_colors,
line_width=traj_line_width,
visible=gui_show_trajectories.value
)
# Add trajectory controls functionality
@gui_show_trajectories.on_update
def _(_) -> None:
with server.atomic():
# Remove all existing trajectories
for i in range(num_frames):
try:
server.scene.remove_by_name(f"/frames/t{i}/head1/trajectory")
except KeyError:
pass
# Create new trajectories if enabled
if gui_show_trajectories.value and traj_3d_head1 is not None:
# Get the mask for the last frame and reshape it
last_frame_mask = masks[traj_end_frame-1].reshape(-1)
# Calculate trajectory lengths
trajectories = xyz_head1_centered[traj_start_frame:traj_end_frame]
traj_diffs = np.diff(trajectories, axis=0)
traj_lengths = np.sum(np.sqrt(np.sum(traj_diffs**2, axis=-1)), axis=0)
# Get points that are within the mask
valid_indices = np.where(last_frame_mask)[0]
if len(valid_indices) > 0:
# Filter by trajectory length
masked_traj_lengths = traj_lengths[valid_indices]
avg_traj_length = np.mean(masked_traj_lengths)
long_traj_indices = valid_indices[masked_traj_lengths >= avg_traj_length]
# Randomly sample from the filtered points
if len(long_traj_indices) > 0:
# Random sampling without replacement
selected_indices = np.random.choice(
len(long_traj_indices),
min(points_to_visualize, len(long_traj_indices)),
replace=False
)
# Get the actual indices in their original order
valid_point_indices = long_traj_indices[np.sort(selected_indices)]
else:
valid_point_indices = np.array([])
else:
valid_point_indices = np.array([])
if len(valid_point_indices) > 0:
# Get trajectories for all valid points
trajectories = xyz_head1_centered[traj_start_frame:traj_end_frame, valid_point_indices]
N_point = trajectories.shape[1]
if color_code == "rainbow":
point_colors = plt.cm.rainbow(np.linspace(0, 1, N_point))[:, :3]
elif color_code == "jet":
point_colors = plt.cm.jet(np.linspace(0, 1, N_point))[:, :3]
# Modify the loop to handle frames less than fixed_length_traj
for i in range(traj_end_frame - traj_start_frame):
# Calculate the actual trajectory length for this frame
actual_length = min(fixed_length_traj, i + 1)
if actual_length > 1: # Need at least 2 points to form a line
# Get the appropriate slice of trajectory data
start_idx = max(0, i - actual_length + 1)
end_idx = i + 1
# Create line segments between consecutive frames
traj_slice = trajectories[start_idx:end_idx]
line_points = np.stack([traj_slice[:-1], traj_slice[1:]], axis=2)
line_points = line_points.reshape(-1, 2, 3)
# Create corresponding colors
line_colors = np.tile(point_colors, (actual_length-1, 1))
line_colors = np.stack([line_colors, line_colors], axis=1)
# Add line segments
server.scene.add_line_segments(
name=f"/frames/t{i+traj_start_frame}/head1/trajectory",
points=line_points,
colors=line_colors,
line_width=traj_line_width,
visible=True
)
# Update color tinting when the checkbox changes
@gui_use_color_tint.on_update
def _(_) -> None:
with server.atomic():
for i in range(num_frames):
# Update head1 point cloud
if traj_3d_head1 is not None:
position = xyz_head1[i]
color = rgb_head1[i]
if conf_mask_head1 is not None:
position = position[conf_mask_head1[i]]
color = color[conf_mask_head1[i]]
color_head1 = color.copy()
if gui_use_color_tint.value:
color_head1 *= blend_ratio
color_head1[:, 0] = onp.clip(color_head1[:, 0] + blue_r * (1 - blend_ratio), 0, 1) # R
color_head1[:, 1] = onp.clip(color_head1[:, 1] + blue_g * (1 - blend_ratio), 0, 1) # G
color_head1[:, 2] = onp.clip(color_head1[:, 2] + blue_b * (1 - blend_ratio), 0, 1) # B
server.scene.remove_by_name(f"/frames/t{i}/head1/point_cloud")
server.scene.add_point_cloud(
name=f"/frames/t{i}/head1/point_cloud",
points=position[::downsample_factor],
colors=color_head1[::downsample_factor],
point_size=point_size,
point_shape="rounded",
)
# Update head2 point cloud
if traj_3d_head2 is not None:
position = xyz_head2[i]
color = rgb_head2[i]
if conf_mask_head2 is not None:
position = position[conf_mask_head2[i]]
color = color[conf_mask_head2[i]]
color_head2 = color.copy()
if gui_use_color_tint.value:
color_head2 *= blend_ratio
color_head2[:, 0] = onp.clip(color_head2[:, 0] + red_r * (1 - blend_ratio), 0, 1) # R
color_head2[:, 1] = onp.clip(color_head2[:, 1] + red_g * (1 - blend_ratio), 0, 1) # G
color_head2[:, 2] = onp.clip(color_head2[:, 2] + red_b * (1 - blend_ratio), 0, 1) # B
server.scene.remove_by_name(f"/frames/t{i}/head2/point_cloud")
server.scene.add_point_cloud(
name=f"/frames/t{i}/head2/point_cloud",
points=position[::downsample_factor],
colors=color_head2[::downsample_factor],
point_size=point_size,
point_shape="rounded",
)
# Initialize video preview
if raw_video is not None:
video_preview.image = process_video_frame(0)
# Update video preview when timestep changes
@gui_timestep.on_update
def _(_) -> None:
current_timestep = gui_timestep.value
if raw_video is not None:
video_preview.image = process_video_frame(current_timestep)
# Playback update loop.
log_memory_usage("before starting playback loop")
prev_timestep = gui_timestep.value
while True:
current_timestep = gui_timestep.value
# If timestep changes, update frame visibility
if current_timestep != prev_timestep:
with server.atomic():
# ... existing code ...
# Update video preview
if raw_video is not None:
video_preview.image = process_video_frame(current_timestep)
# Update in playback mode
if gui_playing.value and not gui_show_all_frames.value:
gui_timestep.value = (gui_timestep.value + 1) % num_frames
# Update video preview in playback mode
if raw_video is not None:
video_preview.image = process_video_frame(gui_timestep.value)
time.sleep(1.0 / gui_framerate.value)
if __name__ == "__main__":
tyro.cli(visualize_st4rtrack)