rag-full / api /utils /embedchain.py
Junranl's picture
Upload folder using huggingface_hub
6e1a53e verified
raw
history blame contribute delete
4.89 kB
import asyncio
import json
import logging
import os
from typing import AsyncIterable
from embedchain import App
from embedchain.config import BaseLlmConfig
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain_community.chat_models.huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain.schema import HumanMessage, SystemMessage
# App config using OpenAI gpt-3.5-turbo-1106 as LLM
'''
EC_APP_CONFIG = {
"app": {
"config": {
"id": "embedchain-demo-app",
}
},
"llm": {
"provider": "openai",
"config": {
"model": "gpt-3.5-turbo-1106",
}
},
'vectordb': {
'provider': 'chroma',
'config': {
'collection_name': 'rag-full',
'dir': 'db',
'allow_reset': True
}
}
}
'''
# Uncomment this configuration to use Mistral as LLM
EC_APP_CONFIG = {
"app": {
"config": {
"name": "embedchain-opensource-app"
}
},
"llm": {
"provider": "huggingface",
"config": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"temperature": 0.1,
"max_tokens": 250,
"top_p": 0.1
}
},
"embedder": {
"provider": "huggingface",
"config": {
"model": "sentence-transformers/all-mpnet-base-v2"
}
},
'vectordb': {
'provider': 'chroma',
'config': {
'collection_name': 'embedchain_store',
'dir': 'db',
'allow_reset': True
}
}
}
async def generate_sources_str(sources_metadata):
"""Generate a string of unique source URLs from the sources metadata."""
seen_urls = set()
unique_sources = [source for source in sources_metadata if source['url'] not in seen_urls and not seen_urls.add(source['url'])]
sources_str = "<sources>\n" + "\n".join(json.dumps(source) for source in unique_sources) + "\n</sources>\n\n"
return sources_str
async def prepare_contexts_for_llm_query(ec_app, query, config, citations):
"""Retrieve contexts from the database and prepare them for the LLM query."""
contexts = ec_app._retrieve_from_database(input_query=query, config=config, where={"app_id": ec_app.config.id}, citations=citations)
if citations and contexts and isinstance(contexts[0], tuple):
return [context[0] for context in contexts]
return contexts
async def generate_messages(ec_app, query, contexts_data_for_llm_query, config):
"""Generate messages to be used in the LLM query."""
messages = []
if config.system_prompt:
messages.append(SystemMessage(content=config.system_prompt))
prompt = ec_app.llm.generate_prompt(query, contexts_data_for_llm_query)
messages.append(HumanMessage(content=prompt))
return messages
async def send_message(query, session_id, number_documents, citations, stream, model) -> AsyncIterable[str]:
ec_app = App.from_config(config=EC_APP_CONFIG)
context = ec_app.search(query, num_documents=number_documents)
sources_str = await generate_sources_str([c['metadata'] for c in context])
ec_app.llm.update_history(app_id=ec_app.config.id, session_id=session_id)
callback = AsyncIteratorCallbackHandler()
#config = BaseLlmConfig(model=model, stream=stream, callbacks=[callback], api_key=os.environ["OPENAI_API_KEY"])
config = BaseLlmConfig(model=model, stream=stream, callbacks=[callback], api_key=os.environ["HUGGINGFACE_ACCESS_TOKEN"])
contexts_data_for_llm_query = await prepare_contexts_for_llm_query(ec_app, query, config, citations)
messages = await generate_messages(ec_app, query, contexts_data_for_llm_query, config)
kwargs = {
"model": model,
"temperature": config.temperature,
"max_tokens": config.max_tokens,
"model_kwargs": {"top_p": config.top_p} if config.top_p else {},
"streaming": stream,
"callbacks": [callback],
"api_key": config.api_key,
"llm" : HuggingFaceEndpoint(
repo_id= model,
temperature= 0.1,
max_new_tokens= 250,
top_p= 0.1,
streaming= stream,
callbacks= [callback],
huggingfacehub_api_token= config.api_key
)
}
llm_task = asyncio.create_task(ChatHuggingFace(**kwargs).agenerate(messages=[messages]))
generated_answer = ""
try:
yield sources_str
async for token in callback.aiter():
yield token
generated_answer += token
except Exception as e:
logging.exception(f"Caught exception: {e}")
finally:
# add conversation in memory
ec_app.llm.add_history(ec_app.config.id, query, generated_answer, session_id=session_id)
callback.done.set()
await llm_task