# Stable Diffusion text-to-image fine-tuning using PyTorch/XLA The `train_text_to_image_xla.py` script shows how to fine-tune stable diffusion model on TPU devices using PyTorch/XLA. It has been tested on v4 and v5p TPU versions. Training code has been tested on multi-host. This script implements Distributed Data Parallel using GSPMD feature in XLA compiler where we shard the input batches over the TPU devices. As of 9-11-2024, these are some expected step times. | accelerator | global batch size | step time (seconds) | | ----------- | ----------------- | --------- | | v5p-128 | 1024 | 0.245 | | v5p-256 | 2048 | 0.234 | | v5p-512 | 4096 | 0.2498 | ## Create TPU To create a TPU on Google Cloud first set these environment variables: ```bash export TPU_NAME= export PROJECT_ID= export ZONE= export ACCELERATOR_TYPE= export RUNTIME_VERSION= ``` Then run the create TPU command: ```bash gcloud alpha compute tpus tpu-vm create ${TPU_NAME} --project ${PROJECT_ID} --zone ${ZONE} --accelerator-type ${ACCELERATOR_TYPE} --version ${RUNTIME_VERSION} --reserved ``` You can also use other ways to reserve TPUs like GKE or queued resources. ## Setup TPU environment Install PyTorch and PyTorch/XLA nightly versions: ```bash gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ --project=${PROJECT_ID} --zone=${ZONE} --worker=all \ --command=' pip3 install --pre torch==2.5.0.dev20240905+cpu torchvision==0.20.0.dev20240905+cpu --index-url https://download.pytorch.org/whl/nightly/cpu pip3 install "torch_xla[tpu] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.5.0.dev20240905-cp310-cp310-linux_x86_64.whl" -f https://storage.googleapis.com/libtpu-releases/index.html ' ``` Verify that PyTorch and PyTorch/XLA were installed correctly: ```bash gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ --project ${PROJECT_ID} --zone ${ZONE} --worker=all \ --command='python3 -c "import torch; import torch_xla;"' ``` Install dependencies: ```bash gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ --project=${PROJECT_ID} --zone=${ZONE} --worker=all \ --command=' git clone https://github.com/huggingface/diffusers.git cd diffusers git checkout main cd examples/research_projects/pytorch_xla pip3 install -r requirements.txt pip3 install pillow --upgrade cd ../../.. pip3 install .' ``` ## Run the training job ### Authenticate Run the following command to authenticate your token. ```bash huggingface-cli login ``` This script only trains the unet part of the network. The VAE and text encoder are fixed. ```bash gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ --project=${PROJECT_ID} --zone=${ZONE} --worker=all \ --command=' export XLA_DISABLE_FUNCTIONALIZATION=1 export PROFILE_DIR=/tmp/ export CACHE_DIR=/tmp/ export DATASET_NAME=lambdalabs/naruto-blip-captions export PER_HOST_BATCH_SIZE=32 # This is known to work on TPU v4. Can set this to 64 for TPU v5p export TRAIN_STEPS=50 export OUTPUT_DIR=/tmp/trained-model/ python diffusers/examples/research_projects/pytorch_xla/train_text_to_image_xla.py --pretrained_model_name_or_path=stabilityai/stable-diffusion-2-base --dataset_name=$DATASET_NAME --resolution=512 --center_crop --random_flip --train_batch_size=$PER_HOST_BATCH_SIZE --max_train_steps=$TRAIN_STEPS --learning_rate=1e-06 --mixed_precision=bf16 --profile_duration=80000 --output_dir=$OUTPUT_DIR --dataloader_num_workers=4 --loader_prefetch_size=4 --device_prefetch_size=4' ``` ### Environment Envs Explained * `XLA_DISABLE_FUNCTIONALIZATION`: To optimize the performance for AdamW optimizer. * `PROFILE_DIR`: Specify where to put the profiling results. * `CACHE_DIR`: Directory to store XLA compiled graphs for persistent caching. * `DATASET_NAME`: Dataset to train the model. * `PER_HOST_BATCH_SIZE`: Size of the batch to load per CPU host. For e.g. for a v5p-16 with 2 CPU hosts, the global batch size will be 2xPER_HOST_BATCH_SIZE. The input batch is sharded along the batch axis. * `TRAIN_STEPS`: Total number of training steps to run the training for. * `OUTPUT_DIR`: Directory to store the fine-tuned model. ## Run inference using the output model To run inference using the output, you can simply load the model and pass it input prompts. The first pass will compile the graph and takes longer with the following passes running much faster. ```bash export CACHE_DIR=/tmp/ ``` ```python import torch import os import sys import numpy as np import torch_xla.core.xla_model as xm from time import time from diffusers import StableDiffusionPipeline import torch_xla.runtime as xr CACHE_DIR = os.environ.get("CACHE_DIR", None) if CACHE_DIR: xr.initialize_cache(CACHE_DIR, readonly=False) def main(): device = xm.xla_device() model_path = "jffacevedo/pxla_trained_model" pipe = StableDiffusionPipeline.from_pretrained( model_path, torch_dtype=torch.bfloat16 ) pipe.to(device) prompt = ["A naruto with green eyes and red legs."] start = time() print("compiling...") image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] print(f"compile time: {time() - start}") print("generate...") start = time() image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] print(f"generation time (after compile) : {time() - start}") image.save("naruto.png") if __name__ == '__main__': main() ``` Expected Results: ```bash compiling... 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [10:03<00:00, 20.10s/it] compile time: 720.656970500946 generate... 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:01<00:00, 17.65it/s] generation time (after compile) : 1.8461642265319824