Spaces:
Runtime error
Runtime error
File size: 7,189 Bytes
23e7e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Stable Diffusion text-to-image fine-tuning using PyTorch/XLA
The `train_text_to_image_xla.py` script shows how to fine-tune stable diffusion model on TPU devices using PyTorch/XLA.
It has been tested on v4 and v5p TPU versions. Training code has been tested on multi-host.
This script implements Distributed Data Parallel using GSPMD feature in XLA compiler
where we shard the input batches over the TPU devices.
As of 9-11-2024, these are some expected step times.
| accelerator | global batch size | step time (seconds) |
| ----------- | ----------------- | --------- |
| v5p-128 | 1024 | 0.245 |
| v5p-256 | 2048 | 0.234 |
| v5p-512 | 4096 | 0.2498 |
## Create TPU
To create a TPU on Google Cloud first set these environment variables:
```bash
export TPU_NAME=<tpu-name>
export PROJECT_ID=<project-id>
export ZONE=<google-cloud-zone>
export ACCELERATOR_TYPE=<accelerator type like v5p-8>
export RUNTIME_VERSION=<runtime version like v2-alpha-tpuv5 for v5p>
```
Then run the create TPU command:
```bash
gcloud alpha compute tpus tpu-vm create ${TPU_NAME} --project ${PROJECT_ID}
--zone ${ZONE} --accelerator-type ${ACCELERATOR_TYPE} --version ${RUNTIME_VERSION}
--reserved
```
You can also use other ways to reserve TPUs like GKE or queued resources.
## Setup TPU environment
Install PyTorch and PyTorch/XLA nightly versions:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
pip3 install --pre torch==2.5.0.dev20240905+cpu torchvision==0.20.0.dev20240905+cpu --index-url https://download.pytorch.org/whl/nightly/cpu
pip3 install "torch_xla[tpu] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.5.0.dev20240905-cp310-cp310-linux_x86_64.whl" -f https://storage.googleapis.com/libtpu-releases/index.html
'
```
Verify that PyTorch and PyTorch/XLA were installed correctly:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project ${PROJECT_ID} --zone ${ZONE} --worker=all \
--command='python3 -c "import torch; import torch_xla;"'
```
Install dependencies:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
git clone https://github.com/huggingface/diffusers.git
cd diffusers
git checkout main
cd examples/research_projects/pytorch_xla
pip3 install -r requirements.txt
pip3 install pillow --upgrade
cd ../../..
pip3 install .'
```
## Run the training job
### Authenticate
Run the following command to authenticate your token.
```bash
huggingface-cli login
```
This script only trains the unet part of the network. The VAE and text encoder
are fixed.
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
export XLA_DISABLE_FUNCTIONALIZATION=1
export PROFILE_DIR=/tmp/
export CACHE_DIR=/tmp/
export DATASET_NAME=lambdalabs/naruto-blip-captions
export PER_HOST_BATCH_SIZE=32 # This is known to work on TPU v4. Can set this to 64 for TPU v5p
export TRAIN_STEPS=50
export OUTPUT_DIR=/tmp/trained-model/
python diffusers/examples/research_projects/pytorch_xla/train_text_to_image_xla.py --pretrained_model_name_or_path=stabilityai/stable-diffusion-2-base --dataset_name=$DATASET_NAME --resolution=512 --center_crop --random_flip --train_batch_size=$PER_HOST_BATCH_SIZE --max_train_steps=$TRAIN_STEPS --learning_rate=1e-06 --mixed_precision=bf16 --profile_duration=80000 --output_dir=$OUTPUT_DIR --dataloader_num_workers=4 --loader_prefetch_size=4 --device_prefetch_size=4'
```
### Environment Envs Explained
* `XLA_DISABLE_FUNCTIONALIZATION`: To optimize the performance for AdamW optimizer.
* `PROFILE_DIR`: Specify where to put the profiling results.
* `CACHE_DIR`: Directory to store XLA compiled graphs for persistent caching.
* `DATASET_NAME`: Dataset to train the model.
* `PER_HOST_BATCH_SIZE`: Size of the batch to load per CPU host. For e.g. for a v5p-16 with 2 CPU hosts, the global batch size will be 2xPER_HOST_BATCH_SIZE. The input batch is sharded along the batch axis.
* `TRAIN_STEPS`: Total number of training steps to run the training for.
* `OUTPUT_DIR`: Directory to store the fine-tuned model.
## Run inference using the output model
To run inference using the output, you can simply load the model and pass it
input prompts. The first pass will compile the graph and takes longer with the following passes running much faster.
```bash
export CACHE_DIR=/tmp/
```
```python
import torch
import os
import sys
import numpy as np
import torch_xla.core.xla_model as xm
from time import time
from diffusers import StableDiffusionPipeline
import torch_xla.runtime as xr
CACHE_DIR = os.environ.get("CACHE_DIR", None)
if CACHE_DIR:
xr.initialize_cache(CACHE_DIR, readonly=False)
def main():
device = xm.xla_device()
model_path = "jffacevedo/pxla_trained_model"
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
)
pipe.to(device)
prompt = ["A naruto with green eyes and red legs."]
start = time()
print("compiling...")
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
print(f"compile time: {time() - start}")
print("generate...")
start = time()
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
print(f"generation time (after compile) : {time() - start}")
image.save("naruto.png")
if __name__ == '__main__':
main()
```
Expected Results:
```bash
compiling...
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 30/30 [10:03<00:00, 20.10s/it]
compile time: 720.656970500946
generate...
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 30/30 [00:01<00:00, 17.65it/s]
generation time (after compile) : 1.8461642265319824 |