Spaces:
Runtime error
Runtime error
File size: 19,897 Bytes
23e7e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
import matplotlib.pyplot as plt
import cv2
import torch.nn.functional as F
class _bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2), padding_mode='zeros')
)
def forward(self, x):
return self.model(x)
# the following are for debugs
print("****", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
for i,layer in enumerate(self.model):
if i != 2:
x = layer(x)
else:
x = layer(x)
#x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
print("____", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
print(x[0])
return x
class _u_bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_u_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2)),
nn.Upsample(scale_factor=2, mode='nearest')
)
def forward(self, x):
return self.model(x)
class _shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample=1):
super(_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters or subsample != 1:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
)
def forward(self, x, y):
#print(x.size(), y.size(), self.process)
if self.process:
y0 = self.model(x)
#print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
return y0 + y
else:
#print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
return x + y
class _u_shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample):
super(_u_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample, padding_mode='zeros'),
nn.Upsample(scale_factor=2, mode='nearest')
)
def forward(self, x, y):
if self.process:
return self.model(x) + y
else:
return x + y
class basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(basic_block, self).__init__()
self.conv1 = _bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.residual(x1)
return self.shortcut(x, x2)
class _u_basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(_u_basic_block, self).__init__()
self.conv1 = _u_bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
y = self.residual(self.conv1(x))
return self.shortcut(x, y)
class _residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
super(_residual_block, self).__init__()
layers = []
for i in range(repetitions):
init_subsample = 1
if i == repetitions - 1 and not is_first_layer:
init_subsample = 2
if i == 0:
l = basic_block(in_filters=in_filters, nb_filters=nb_filters, init_subsample=init_subsample)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters, init_subsample=init_subsample)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class _upsampling_residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions):
super(_upsampling_residual_block, self).__init__()
layers = []
for i in range(repetitions):
l = None
if i == 0:
l = _u_basic_block(in_filters=in_filters, nb_filters=nb_filters)#(input)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters)#(input)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class res_skip(nn.Module):
def __init__(self):
super(res_skip, self).__init__()
self.block0 = _residual_block(in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True)#(input)
self.block1 = _residual_block(in_filters=24, nb_filters=48, repetitions=3)#(block0)
self.block2 = _residual_block(in_filters=48, nb_filters=96, repetitions=5)#(block1)
self.block3 = _residual_block(in_filters=96, nb_filters=192, repetitions=7)#(block2)
self.block4 = _residual_block(in_filters=192, nb_filters=384, repetitions=12)#(block3)
self.block5 = _upsampling_residual_block(in_filters=384, nb_filters=192, repetitions=7)#(block4)
self.res1 = _shortcut(in_filters=192, nb_filters=192)#(block3, block5, subsample=(1,1))
self.block6 = _upsampling_residual_block(in_filters=192, nb_filters=96, repetitions=5)#(res1)
self.res2 = _shortcut(in_filters=96, nb_filters=96)#(block2, block6, subsample=(1,1))
self.block7 = _upsampling_residual_block(in_filters=96, nb_filters=48, repetitions=3)#(res2)
self.res3 = _shortcut(in_filters=48, nb_filters=48)#(block1, block7, subsample=(1,1))
self.block8 = _upsampling_residual_block(in_filters=48, nb_filters=24, repetitions=2)#(res3)
self.res4 = _shortcut(in_filters=24, nb_filters=24)#(block0,block8, subsample=(1,1))
self.block9 = _residual_block(in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True)#(res4)
self.conv15 = _bn_relu_conv(in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1)#(block7)
def forward(self, x):
x0 = self.block0(x)
x1 = self.block1(x0)
x2 = self.block2(x1)
x3 = self.block3(x2)
x4 = self.block4(x3)
x5 = self.block5(x4)
res1 = self.res1(x3, x5)
x6 = self.block6(res1)
res2 = self.res2(x2, x6)
x7 = self.block7(res2)
res3 = self.res3(x1, x7)
x8 = self.block8(res3)
res4 = self.res4(x0, x8)
x9 = self.block9(res4)
y = self.conv15(x9)
return y
class MyDataset(Dataset):
def __init__(self, image_paths, transform=None):
self.image_paths = image_paths
self.transform = transform
def get_class_label(self, image_name):
# your method here
head, tail = os.path.split(image_name)
#print(tail)
return tail
def __getitem__(self, index):
image_path = self.image_paths[index]
x = Image.open(image_path)
y = self.get_class_label(image_path.split('/')[-1])
if self.transform is not None:
x = self.transform(x)
return x, y
def __len__(self):
return len(self.image_paths)
def loadImages(folder):
imgs = []
matches = []
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
if os.path.isfile(file_path):
matches.append(file_path)
return matches
def crop_center_square(image):
width, height = image.size
side_length = min(width, height)
left = (width - side_length) // 2
top = (height - side_length) // 2
right = left + side_length
bottom = top + side_length
cropped_image = image.crop((left, top, right, bottom))
return cropped_image
def crop_image(image, crop_size, stride):
width, height = image.size
crop_width, crop_height = crop_size
cropped_images = []
for j in range(0, height - crop_height + 1, stride):
for i in range(0, width - crop_width + 1, stride):
crop_box = (i, j, i + crop_width, j + crop_height)
cropped_image = image.crop(crop_box)
cropped_images.append(cropped_image)
return cropped_images
def process_image_ref(image):
resized_image_512 = image.resize((512, 512))
image_list = [resized_image_512]
crop_size_384 = (384, 384)
stride_384 = 128
image_list.extend(crop_image(resized_image_512, crop_size_384, stride_384))
return image_list
def process_image_Q(image):
resized_image_512 = image.resize((512, 512)).convert("RGB").convert("RGB")
image_list = []
crop_size_384 = (384, 384)
stride_384 = 128
image_list.extend(crop_image(resized_image_512, crop_size_384, stride_384))
return image_list
def process_image(image, target_width=512, target_height = 512):
img_width, img_height = image.size
img_ratio = img_width / img_height
target_ratio = target_width / target_height
ratio_error = abs(img_ratio - target_ratio) / target_ratio
if ratio_error < 0.15:
resized_image = image.resize((target_width, target_height), Image.BICUBIC)
else:
if img_ratio > target_ratio:
new_width = int(img_height * target_ratio)
left = int((0 + img_width - new_width)/2)
top = 0
right = left + new_width
bottom = img_height
else:
new_height = int(img_width / target_ratio)
left = 0
top = int((0 + img_height - new_height)/2)
right = img_width
bottom = top + new_height
cropped_image = image.crop((left, top, right, bottom))
resized_image = cropped_image.resize((target_width, target_height), Image.BICUBIC)
return resized_image.convert('RGB')
def crop_image_varres(image, crop_size, h_stride, w_stride):
width, height = image.size
crop_width, crop_height = crop_size
cropped_images = []
for j in range(0, height - crop_height + 1, h_stride):
for i in range(0, width - crop_width + 1, w_stride):
crop_box = (i, j, i + crop_width, j + crop_height)
cropped_image = image.crop(crop_box)
cropped_images.append(cropped_image)
return cropped_images
def process_image_ref_varres(image, target_width=512, target_height = 512):
resized_image_512 = image.resize((target_width, target_height))
image_list = [resized_image_512]
crop_size_384 = (target_width//4*3, target_height//4*3)
w_stride_384 = target_width//4
h_stride_384 = target_height//4
image_list.extend(crop_image_varres(resized_image_512, crop_size_384, h_stride = h_stride_384, w_stride = w_stride_384))
return image_list
def process_image_Q_varres(image, target_width=512, target_height = 512):
resized_image_512 = image.resize((target_width, target_height)).convert("RGB").convert("RGB")
image_list = []
crop_size_384 = (target_width//4*3, target_height//4*3)
w_stride_384 = target_width//4
h_stride_384 = target_height//4
image_list.extend(crop_image_varres(resized_image_512, crop_size_384, h_stride = h_stride_384, w_stride = w_stride_384))
return image_list
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x) # 直接相加
out = F.relu(out)
return out
class TwoLayerResNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(TwoLayerResNet, self).__init__()
self.block1 = ResNetBlock(in_channels, out_channels)
self.block2 = ResNetBlock(out_channels, out_channels)
self.block3 = ResNetBlock(out_channels, out_channels)
self.block4 = ResNetBlock(out_channels, out_channels)
def forward(self, x):
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
return x
class MultiHiddenResNetModel(nn.Module):
def __init__(self, channels_list, num_tensors):
super(MultiHiddenResNetModel, self).__init__()
self.two_layer_resnets = nn.ModuleList([TwoLayerResNet(channels_list[idx]*2, channels_list[min(len(channels_list)-1,idx+2)]) for idx in range(num_tensors)])
def forward(self, tensor_list):
processed_list = []
for i, tensor in enumerate(tensor_list):
tensor = self.two_layer_resnets[i](tensor)
processed_list.append(tensor)
return processed_list
def calculate_target_size(h, w):
if random.random()>0.5:
target_h = (h // 8) * 8
target_w = (w // 8) * 8
elif random.random()>0.5:
target_h = (h // 8) * 8
target_w = (w // 8) * 8
else:
target_h = (h // 8) * 8
target_w = (w // 8) * 8
if target_h == 0:
target_h = 8
if target_w == 0:
target_w = 8
return target_h, target_w
def downsample_tensor(tensor):
b, c, h, w = tensor.shape
target_h, target_w = calculate_target_size(h, w)
downsampled_tensor = F.interpolate(tensor, size=(target_h, target_w), mode='bilinear', align_corners=False)
return downsampled_tensor
def get_pixart_config():
pixart_config = {
"_class_name": "Transformer2DModel",
"_diffusers_version": "0.22.0.dev0",
"activation_fn": "gelu-approximate",
"attention_bias": True,
"attention_head_dim": 72,
"attention_type": "default",
"caption_channels": 4096,
"cross_attention_dim": 1152,
"double_self_attention": False,
"dropout": 0.0,
"in_channels": 4,
# "interpolation_scale": 2,
"norm_elementwise_affine": False,
"norm_eps": 1e-06,
"norm_num_groups": 32,
"norm_type": "ada_norm_single",
"num_attention_heads": 16,
"num_embeds_ada_norm": 1000,
"num_layers": 28,
"num_vector_embeds": None,
"only_cross_attention": False,
"out_channels": 8,
"patch_size": 2,
"sample_size": 128,
"upcast_attention": False,
# "use_additional_conditions": False,
"use_linear_projection": False
}
return pixart_config
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
def forward(self, x):
return self.double_conv(x)
class UNet(nn.Module):
def __init__(self):
super().__init__()
# left
self.left_conv_1 = DoubleConv(6, 64)
self.down_1 = nn.MaxPool2d(2, 2)
self.left_conv_2 = DoubleConv(64, 128)
self.down_2 = nn.MaxPool2d(2, 2)
self.left_conv_3 = DoubleConv(128, 256)
self.down_3 = nn.MaxPool2d(2, 2)
self.left_conv_4 = DoubleConv(256, 512)
self.down_4 = nn.MaxPool2d(2, 2)
# center
self.center_conv = DoubleConv(512, 1024)
# right
self.up_1 = nn.ConvTranspose2d(1024, 512, 2, 2)
self.right_conv_1 = DoubleConv(1024, 512)
self.up_2 = nn.ConvTranspose2d(512, 256, 2, 2)
self.right_conv_2 = DoubleConv(512, 256)
self.up_3 = nn.ConvTranspose2d(256, 128, 2, 2)
self.right_conv_3 = DoubleConv(256, 128)
self.up_4 = nn.ConvTranspose2d(128, 64, 2, 2)
self.right_conv_4 = DoubleConv(128, 64)
# output
self.output = nn.Conv2d(64, 3, 1, 1, 0)
def forward(self, x):
# left
x1 = self.left_conv_1(x)
x1_down = self.down_1(x1)
x2 = self.left_conv_2(x1_down)
x2_down = self.down_2(x2)
x3 = self.left_conv_3(x2_down)
x3_down = self.down_3(x3)
x4 = self.left_conv_4(x3_down)
x4_down = self.down_4(x4)
# center
x5 = self.center_conv(x4_down)
# right
x6_up = self.up_1(x5)
temp = torch.cat((x6_up, x4), dim=1)
x6 = self.right_conv_1(temp)
x7_up = self.up_2(x6)
temp = torch.cat((x7_up, x3), dim=1)
x7 = self.right_conv_2(temp)
x8_up = self.up_3(x7)
temp = torch.cat((x8_up, x2), dim=1)
x8 = self.right_conv_3(temp)
x9_up = self.up_4(x8)
temp = torch.cat((x9_up, x1), dim=1)
x9 = self.right_conv_4(temp)
# output
output = self.output(x9)
return output
from copy import deepcopy
def init_causal_dit(model, base_model):
temp_ckpt = deepcopy(base_model)
checkpoint = temp_ckpt.state_dict()
# checkpoint['pos_embed_1d.weight'] = torch.zeros(3, model.config.num_attention_heads * model.config.attention_head_dim, device=model.pos_embed_1d.weight.device, dtype = model.pos_embed_1d.weight.dtype)
model.load_state_dict(checkpoint, strict=True)
del temp_ckpt
return model
def init_controlnet(model, base_model):
temp_ckpt = deepcopy(base_model)
checkpoint = temp_ckpt.state_dict()
checkpoint_weight = checkpoint['pos_embed.proj.weight']
new_weight = torch.zeros(model.pos_embed.proj.weight.shape, device=model.pos_embed.proj.weight.device, dtype = model.pos_embed.proj.weight.dtype)
print('model.pos_embed.proj.weight.shape',model.pos_embed.proj.weight.shape)
new_weight[:, :4] = checkpoint_weight
checkpoint['pos_embed.proj.weight'] = new_weight
print('new_weight', new_weight.dtype)
model.load_state_dict(checkpoint, strict=False)
del temp_ckpt
return model |