File size: 19,897 Bytes
23e7e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
import matplotlib.pyplot as plt
import cv2
import torch.nn.functional as F



class _bn_relu_conv(nn.Module):
    def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
        super(_bn_relu_conv, self).__init__()
        self.model = nn.Sequential(
            nn.BatchNorm2d(in_filters, eps=1e-3),
            nn.LeakyReLU(0.2),
            nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2), padding_mode='zeros')
        )

    def forward(self, x):
        return self.model(x)

        # the following are for debugs
        print("****", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
        for i,layer in enumerate(self.model):
            if i != 2:
                x = layer(x)
            else:
                x = layer(x)
                #x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
            print("____", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
            print(x[0])
        return x


class _u_bn_relu_conv(nn.Module):
    def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
        super(_u_bn_relu_conv, self).__init__()
        self.model = nn.Sequential(
            nn.BatchNorm2d(in_filters, eps=1e-3),
            nn.LeakyReLU(0.2),
            nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2)),
            nn.Upsample(scale_factor=2, mode='nearest')
        )

    def forward(self, x):
        return self.model(x)



class _shortcut(nn.Module):
    def __init__(self, in_filters, nb_filters, subsample=1):
        super(_shortcut, self).__init__()
        self.process = False
        self.model = None
        if in_filters != nb_filters or subsample != 1:
            self.process = True
            self.model = nn.Sequential(
                    nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
                )

    def forward(self, x, y):
        #print(x.size(), y.size(), self.process)
        if self.process:
            y0 = self.model(x)
            #print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
            return y0 + y
        else:
            #print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
            return x + y

class _u_shortcut(nn.Module):
    def __init__(self, in_filters, nb_filters, subsample):
        super(_u_shortcut, self).__init__()
        self.process = False
        self.model = None
        if in_filters != nb_filters:
            self.process = True
            self.model = nn.Sequential(
                nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample, padding_mode='zeros'),
                nn.Upsample(scale_factor=2, mode='nearest')
            )

    def forward(self, x, y):
        if self.process:
            return self.model(x) + y
        else:
            return x + y


class basic_block(nn.Module):
    def __init__(self, in_filters, nb_filters, init_subsample=1):
        super(basic_block, self).__init__()
        self.conv1 = _bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
        self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
        self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.residual(x1)
        return self.shortcut(x, x2)

class _u_basic_block(nn.Module):
    def __init__(self, in_filters, nb_filters, init_subsample=1):
        super(_u_basic_block, self).__init__()
        self.conv1 = _u_bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
        self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
        self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)

    def forward(self, x):
        y = self.residual(self.conv1(x))
        return self.shortcut(x, y)


class _residual_block(nn.Module):
    def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
        super(_residual_block, self).__init__()
        layers = []
        for i in range(repetitions):
            init_subsample = 1
            if i == repetitions - 1 and not is_first_layer:
                init_subsample = 2
            if i == 0:
                l = basic_block(in_filters=in_filters, nb_filters=nb_filters, init_subsample=init_subsample)
            else:
                l = basic_block(in_filters=nb_filters, nb_filters=nb_filters, init_subsample=init_subsample)
            layers.append(l)

        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


class _upsampling_residual_block(nn.Module):
    def __init__(self, in_filters, nb_filters, repetitions):
        super(_upsampling_residual_block, self).__init__()
        layers = []
        for i in range(repetitions):
            l = None
            if i == 0: 
                l = _u_basic_block(in_filters=in_filters, nb_filters=nb_filters)#(input)
            else:
                l = basic_block(in_filters=nb_filters, nb_filters=nb_filters)#(input)
            layers.append(l)

        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


class res_skip(nn.Module):

    def __init__(self):
        super(res_skip, self).__init__()
        self.block0 = _residual_block(in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True)#(input)
        self.block1 = _residual_block(in_filters=24, nb_filters=48, repetitions=3)#(block0)
        self.block2 = _residual_block(in_filters=48, nb_filters=96, repetitions=5)#(block1)
        self.block3 = _residual_block(in_filters=96, nb_filters=192, repetitions=7)#(block2)
        self.block4 = _residual_block(in_filters=192, nb_filters=384, repetitions=12)#(block3)
        
        self.block5 = _upsampling_residual_block(in_filters=384, nb_filters=192, repetitions=7)#(block4)
        self.res1 = _shortcut(in_filters=192, nb_filters=192)#(block3, block5, subsample=(1,1))

        self.block6 = _upsampling_residual_block(in_filters=192, nb_filters=96, repetitions=5)#(res1)
        self.res2 = _shortcut(in_filters=96, nb_filters=96)#(block2, block6, subsample=(1,1))

        self.block7 = _upsampling_residual_block(in_filters=96, nb_filters=48, repetitions=3)#(res2)
        self.res3 = _shortcut(in_filters=48, nb_filters=48)#(block1, block7, subsample=(1,1))

        self.block8 = _upsampling_residual_block(in_filters=48, nb_filters=24, repetitions=2)#(res3)
        self.res4 = _shortcut(in_filters=24, nb_filters=24)#(block0,block8, subsample=(1,1))

        self.block9 = _residual_block(in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True)#(res4)
        self.conv15 = _bn_relu_conv(in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1)#(block7)

    def forward(self, x):
        x0 = self.block0(x)
        x1 = self.block1(x0)
        x2 = self.block2(x1)
        x3 = self.block3(x2)
        x4 = self.block4(x3)

        x5 = self.block5(x4)
        res1 = self.res1(x3, x5)

        x6 = self.block6(res1)
        res2 = self.res2(x2, x6)

        x7 = self.block7(res2)
        res3 = self.res3(x1, x7)

        x8 = self.block8(res3)
        res4 = self.res4(x0, x8)

        x9 = self.block9(res4)
        y = self.conv15(x9)

        return y

class MyDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform
        
    def get_class_label(self, image_name):
        # your method here
        head, tail = os.path.split(image_name)
        #print(tail)
        return tail
        
    def __getitem__(self, index):
        image_path = self.image_paths[index]
        x = Image.open(image_path)
        y = self.get_class_label(image_path.split('/')[-1])
        if self.transform is not None:
            x = self.transform(x)
        return x, y
    
    def __len__(self):
        return len(self.image_paths)

def loadImages(folder):
    imgs = []
    matches = []
    
    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)
        if os.path.isfile(file_path):
            matches.append(file_path)
    
    return matches


def crop_center_square(image):

    width, height = image.size
    

    side_length = min(width, height)

    left = (width - side_length) // 2
    top = (height - side_length) // 2
    right = left + side_length
    bottom = top + side_length
    
    cropped_image = image.crop((left, top, right, bottom))
    
    return cropped_image

def crop_image(image, crop_size, stride):

    width, height = image.size
    crop_width, crop_height = crop_size
    cropped_images = []

    for j in range(0, height - crop_height + 1, stride):
        for i in range(0, width - crop_width + 1, stride):
            crop_box = (i, j, i + crop_width, j + crop_height)
            cropped_image = image.crop(crop_box)
            cropped_images.append(cropped_image)

    return cropped_images

def process_image_ref(image):

    resized_image_512 = image.resize((512, 512))


    image_list = [resized_image_512]


    crop_size_384 = (384, 384)
    stride_384 = 128
    image_list.extend(crop_image(resized_image_512, crop_size_384, stride_384))


    return image_list


def process_image_Q(image):

    resized_image_512 = image.resize((512, 512)).convert("RGB").convert("RGB")

    image_list = []

    crop_size_384 = (384, 384)
    stride_384 = 128
    image_list.extend(crop_image(resized_image_512, crop_size_384, stride_384))

    return image_list

def process_image(image, target_width=512, target_height = 512):
    img_width, img_height = image.size
    img_ratio = img_width / img_height
    
    target_ratio = target_width / target_height
    
    ratio_error = abs(img_ratio - target_ratio) / target_ratio
    
    if ratio_error < 0.15:
        resized_image = image.resize((target_width, target_height), Image.BICUBIC)
    else:
        if img_ratio > target_ratio:
            new_width = int(img_height * target_ratio)
            left = int((0 + img_width - new_width)/2)
            top = 0
            right = left + new_width
            bottom = img_height
        else:
            new_height = int(img_width / target_ratio)
            left = 0
            top = int((0 + img_height - new_height)/2)
            right = img_width
            bottom = top + new_height
        
        cropped_image = image.crop((left, top, right, bottom))
        resized_image = cropped_image.resize((target_width, target_height), Image.BICUBIC)
    
    return resized_image.convert('RGB')

def crop_image_varres(image, crop_size, h_stride, w_stride):
        width, height = image.size
        crop_width, crop_height = crop_size
        cropped_images = []

        for j in range(0, height - crop_height + 1, h_stride):
            for i in range(0, width - crop_width + 1, w_stride):
                crop_box = (i, j, i + crop_width, j + crop_height)
                cropped_image = image.crop(crop_box)
                cropped_images.append(cropped_image)

        return cropped_images

def process_image_ref_varres(image, target_width=512, target_height = 512):
    resized_image_512 = image.resize((target_width, target_height))

    image_list = [resized_image_512]

    crop_size_384 = (target_width//4*3, target_height//4*3)
    w_stride_384 = target_width//4
    h_stride_384 = target_height//4
    image_list.extend(crop_image_varres(resized_image_512, crop_size_384, h_stride = h_stride_384, w_stride = w_stride_384))

    return image_list


def process_image_Q_varres(image, target_width=512, target_height = 512):

    resized_image_512 = image.resize((target_width, target_height)).convert("RGB").convert("RGB")

    image_list = []

    crop_size_384 = (target_width//4*3, target_height//4*3)
    w_stride_384 = target_width//4
    h_stride_384 = target_height//4
    image_list.extend(crop_image_varres(resized_image_512, crop_size_384, h_stride = h_stride_384, w_stride = w_stride_384))


    return image_list



import torch
import torch.nn as nn
import torch.nn.functional as F

class ResNetBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResNetBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)  # 直接相加
        out = F.relu(out)
        return out

class TwoLayerResNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(TwoLayerResNet, self).__init__()
        self.block1 = ResNetBlock(in_channels, out_channels)
        self.block2 = ResNetBlock(out_channels, out_channels)
        self.block3 = ResNetBlock(out_channels, out_channels)
        self.block4 = ResNetBlock(out_channels, out_channels)

    def forward(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        return x
    

class MultiHiddenResNetModel(nn.Module):
    def __init__(self, channels_list, num_tensors):
        super(MultiHiddenResNetModel, self).__init__()
        self.two_layer_resnets = nn.ModuleList([TwoLayerResNet(channels_list[idx]*2, channels_list[min(len(channels_list)-1,idx+2)]) for idx in range(num_tensors)])

    def forward(self, tensor_list):
        processed_list = []
        for i, tensor in enumerate(tensor_list):
            tensor = self.two_layer_resnets[i](tensor)
            processed_list.append(tensor)
        
        return processed_list
    

def calculate_target_size(h, w):
    if random.random()>0.5:
        target_h = (h // 8) * 8
        target_w = (w // 8) * 8
    elif random.random()>0.5:
        target_h = (h // 8) * 8
        target_w = (w // 8) * 8
    else:
        target_h = (h // 8) * 8
        target_w = (w // 8) * 8
    
    if target_h == 0:
        target_h = 8
    if target_w == 0:
        target_w = 8
    
    return target_h, target_w


def downsample_tensor(tensor):
    b, c, h, w = tensor.shape
    
    target_h, target_w = calculate_target_size(h, w)
    
    downsampled_tensor = F.interpolate(tensor, size=(target_h, target_w), mode='bilinear', align_corners=False)
    
    return downsampled_tensor



def get_pixart_config():
    pixart_config = {
            "_class_name": "Transformer2DModel",
            "_diffusers_version": "0.22.0.dev0",
            "activation_fn": "gelu-approximate",
            "attention_bias": True,
            "attention_head_dim": 72,
            "attention_type": "default",
            "caption_channels": 4096,
            "cross_attention_dim": 1152,
            "double_self_attention": False,
            "dropout": 0.0,
            "in_channels": 4,
            # "interpolation_scale": 2,
            "norm_elementwise_affine": False,
            "norm_eps": 1e-06,
            "norm_num_groups": 32,
            "norm_type": "ada_norm_single",
            "num_attention_heads": 16,
            "num_embeds_ada_norm": 1000,
            "num_layers": 28,
            "num_vector_embeds": None,
            "only_cross_attention": False,
            "out_channels": 8,
            "patch_size": 2,
            "sample_size": 128,
            "upcast_attention": False,
            # "use_additional_conditions": False,
            "use_linear_projection": False
            }
    return pixart_config



class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Conv2d(out_channels, out_channels, 3, 1, 1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        )

    def forward(self, x):
        return self.double_conv(x)


class UNet(nn.Module):
    def __init__(self):
        super().__init__()
        # left
        self.left_conv_1 = DoubleConv(6, 64)
        self.down_1 = nn.MaxPool2d(2, 2)

        self.left_conv_2 = DoubleConv(64, 128)
        self.down_2 = nn.MaxPool2d(2, 2)

        self.left_conv_3 = DoubleConv(128, 256)
        self.down_3 = nn.MaxPool2d(2, 2)

        self.left_conv_4 = DoubleConv(256, 512)
        self.down_4 = nn.MaxPool2d(2, 2)

        # center
        self.center_conv = DoubleConv(512, 1024)

        # right
        self.up_1 = nn.ConvTranspose2d(1024, 512, 2, 2)
        self.right_conv_1 = DoubleConv(1024, 512)

        self.up_2 = nn.ConvTranspose2d(512, 256, 2, 2)
        self.right_conv_2 = DoubleConv(512, 256)

        self.up_3 = nn.ConvTranspose2d(256, 128, 2, 2)
        self.right_conv_3 = DoubleConv(256, 128)

        self.up_4 = nn.ConvTranspose2d(128, 64, 2, 2)
        self.right_conv_4 = DoubleConv(128, 64)

        # output
        self.output = nn.Conv2d(64, 3, 1, 1, 0)

    def forward(self, x):
        # left
        x1 = self.left_conv_1(x)
        x1_down = self.down_1(x1)

        x2 = self.left_conv_2(x1_down)
        x2_down = self.down_2(x2)

        x3 = self.left_conv_3(x2_down)
        x3_down = self.down_3(x3)

        x4 = self.left_conv_4(x3_down)
        x4_down = self.down_4(x4)

        # center
        x5 = self.center_conv(x4_down)

        # right
        x6_up = self.up_1(x5)
        temp = torch.cat((x6_up, x4), dim=1)
        x6 = self.right_conv_1(temp)

        x7_up = self.up_2(x6)
        temp = torch.cat((x7_up, x3), dim=1)
        x7 = self.right_conv_2(temp)

        x8_up = self.up_3(x7)
        temp = torch.cat((x8_up, x2), dim=1)
        x8 = self.right_conv_3(temp)

        x9_up = self.up_4(x8)
        temp = torch.cat((x9_up, x1), dim=1)
        x9 = self.right_conv_4(temp)

        # output
        output = self.output(x9)

        return output



from copy import deepcopy

def init_causal_dit(model, base_model):
    temp_ckpt = deepcopy(base_model)
    checkpoint = temp_ckpt.state_dict()
    # checkpoint['pos_embed_1d.weight'] = torch.zeros(3, model.config.num_attention_heads * model.config.attention_head_dim, device=model.pos_embed_1d.weight.device, dtype = model.pos_embed_1d.weight.dtype)
    model.load_state_dict(checkpoint, strict=True)
    del temp_ckpt
    return model

def init_controlnet(model, base_model):
    temp_ckpt = deepcopy(base_model)
    checkpoint = temp_ckpt.state_dict()
    checkpoint_weight = checkpoint['pos_embed.proj.weight']
    new_weight = torch.zeros(model.pos_embed.proj.weight.shape, device=model.pos_embed.proj.weight.device, dtype = model.pos_embed.proj.weight.dtype)
    print('model.pos_embed.proj.weight.shape',model.pos_embed.proj.weight.shape)
    new_weight[:, :4] = checkpoint_weight
    checkpoint['pos_embed.proj.weight'] = new_weight
    print('new_weight', new_weight.dtype)
    model.load_state_dict(checkpoint, strict=False)
    del temp_ckpt
    return model