Spaces:
Runtime error
Runtime error
File size: 30,701 Bytes
1468e82 23e7e6a 0cf3e95 e83cf22 0cf3e95 ed4415b 23e7e6a b7a3308 23e7e6a c52d0eb 23e7e6a 83dd084 23e7e6a 5cf8e7c 23e7e6a 2227ec5 83dd084 23e7e6a 2227ec5 fa913d1 3331e4c 2227ec5 5cf8e7c b4c4b2a 1468e82 23e7e6a 83dd084 23e7e6a 6fc8df6 23e7e6a fa913d1 23e7e6a 1468e82 23e7e6a 1468e82 23e7e6a 6fc8df6 785ea27 23e7e6a 1468e82 23e7e6a 1468e82 23e7e6a e83cf22 6ca968b 23e7e6a 6fc8df6 6ca968b d31b15a 6ca968b 2af336b 6fc8df6 23e7e6a 6ca968b 23e7e6a 0cf3e95 23e7e6a 1468e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
import spaces
import contextlib
import gc
import json
import logging
import math
import os
import random
import shutil
import sys
import time
import itertools
import copy
from pathlib import Path
import cv2
import numpy as np
from PIL import Image, ImageDraw
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from safetensors.torch import load_model
from peft import LoraConfig
import gradio as gr
import pandas as pd
import transformers
from transformers import (
AutoTokenizer,
PretrainedConfig,
CLIPVisionModelWithProjection,
CLIPImageProcessor,
CLIPProcessor,
)
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
PixArtTransformer2DModel,
CausalSparseDiTModel,
CausalSparseDiTControlModel,
CobraPixArtAlphaPipeline,
UniPCMultistepScheduler,
)
from cobra_utils.utils import *
from huggingface_hub import snapshot_download
article = r"""
If Cobra is helpful, please help to ⭐ the <a href='https://github.com/zhuang2002/Cobra' target='_blank'>Github Repo</a>. Thanks! [](https://github.com/zhuang2002/Cobra)
---
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@misc{zhuang2025cobra,
title={Cobra: Efficient Line Art COlorization with BRoAder References},
author={Junhao Zhuang, Lingen Li, Xuan Ju, Zhaoyang Zhang, Chun Yuan and Ying Shan},
year={2025},
eprint={****.***},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org},
}
```
"""
model_global_path = snapshot_download(repo_id="JunhaoZhuang/Cobra", cache_dir='./Cobra/', repo_type="model")
print(model_global_path)
examples = [
[
"./examples/shadow/example0/input.png",
["./examples/shadow/example0/reference_image_0.png",
"./examples/shadow/example0/reference_image_1.png",
"./examples/shadow/example0/reference_image_2.png",
"./examples/shadow/example0/reference_image_3.png"],
"line + shadow", # style
1, # seed
10, # step
20, # top k
],
[
"./examples/shadow/example1/input.png",
["./examples/shadow/example1/reference_image_0.png",
"./examples/shadow/example1/reference_image_1.png",
"./examples/shadow/example1/reference_image_2.png",
"./examples/shadow/example1/reference_image_3.png",
"./examples/shadow/example1/reference_image_4.png",
"./examples/shadow/example1/reference_image_5.png"],
"line + shadow", # style
1, # seed
10, # step
20, # top k
],
[
"./examples/shadow/example2/input.png",
["./examples/shadow/example2/reference_image_0.png"],
"line + shadow", # style
4, # seed
10, # step
3, # top k
],
[
"./examples/line/example2/input.png",
["./examples/line/example2/reference_image_0.png",
"./examples/line/example2/reference_image_1.png",
"./examples/line/example2/reference_image_2.png",
"./examples/line/example2/reference_image_3.png"],
"line", # style
1, # seed
10, # step
20, # top k
],
[
"./examples/line/example0/input.png",
["./examples/line/example0/reference_image_0.png",
"./examples/line/example0/reference_image_1.png",
"./examples/line/example0/reference_image_2.png"],
"line", # style
0, # seed
10, # step
6, # top k
],
[
"./examples/line/example1/input.png",
["./examples/line/example1/reference_image_0.png",],
"line", # style
0, # seed
10, # step
3, # top k
],
[
"./examples/line/example3/input.png",
["./examples/line/example3/reference_image_0.png",],
"line", # style
4, # seed
10, # step
3, # top k
],]
ratio_list = [[800, 800], [768, 896], [704, 928], [672, 960], [640, 1024], [608, 1056], [576, 1088], [576, 1184]]
ratio_list += [[896, 768], [928, 704], [960, 672], [1024, 640], [1056, 608], [1088, 576], [1184, 576]]
def get_rate(image):
input_rate = image.size[0] / image.size[1]
min_diff = float('inf')
best_idx = 0
for i, ratio in enumerate(ratio_list):
ratio_rate = ratio[0] / ratio[1]
diff = abs(input_rate - ratio_rate)
if diff < min_diff:
min_diff = diff
best_idx = i
return ratio_list[best_idx]
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
weight_dtype = torch.float16
# line model
line_model_path = os.path.join(model_global_path, 'LE', 'erika.pth')
line_model = res_skip()
line_model.load_state_dict(torch.load(line_model_path))
line_model.eval()
line_model.cuda()
# image encoder
image_processor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(os.path.join(model_global_path, 'image_encoder')).to('cuda')
# os.path.join(model_global_path, 'image_encoder')
# model_sketch = create_model_sketch('default').to('cuda') # create a model given opt.model and other options
# model_sketch.eval()
global pipeline
global MultiResNetModel
global cur_style
cur_style = 'line + shadow'
weight_dtype = torch.float16
block_out_channels = [128, 128, 256, 512, 512]
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
MultiResNetModel.load_state_dict(torch.load(os.path.join(model_global_path, 'shadow_GSRP', 'MultiResNetModel.bin'), map_location='cpu'), strict=True)
MultiResNetModel.to('cuda', dtype=weight_dtype)
# transformer
transform = transforms.Compose([
transforms.ToTensor(), # 将 PIL 图像转换为 Tensor
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化
])
# seed = 43
lora_rank = 128
pretrained_model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
transformer = PixArtTransformer2DModel.from_pretrained(
pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None
)
pixart_config = get_pixart_config()
causal_dit = CausalSparseDiTModel(num_attention_heads=pixart_config.get("num_attention_heads"),
attention_head_dim=pixart_config.get("attention_head_dim"),
in_channels=pixart_config.get("in_channels"),
out_channels=pixart_config.get("out_channels"),
num_layers=pixart_config.get("num_layers"),
dropout=pixart_config.get("dropout"),
norm_num_groups=pixart_config.get("norm_num_groups"),
cross_attention_dim=pixart_config.get("cross_attention_dim"),
attention_bias=pixart_config.get("attention_bias"),
sample_size=pixart_config.get("sample_size"),
patch_size=pixart_config.get("patch_size"),
activation_fn=pixart_config.get("activation_fn"),
num_embeds_ada_norm=pixart_config.get("num_embeds_ada_norm"),
upcast_attention=pixart_config.get("upcast_attention"),
norm_type=pixart_config.get("norm_type"),
norm_elementwise_affine=pixart_config.get("norm_elementwise_affine"),
norm_eps=pixart_config.get("norm_eps"),
caption_channels=pixart_config.get("caption_channels"),
attention_type=pixart_config.get("attention_type"))
causal_dit = init_causal_dit(causal_dit, transformer)
print('loaded causal_dit')
controlnet = CausalSparseDiTControlModel(num_attention_heads=pixart_config.get("num_attention_heads"),
attention_head_dim=pixart_config.get("attention_head_dim"),
in_channels=pixart_config.get("in_channels"),
cond_chanels = 9,
out_channels=pixart_config.get("out_channels"),
num_layers=pixart_config.get("num_layers"),
dropout=pixart_config.get("dropout"),
norm_num_groups=pixart_config.get("norm_num_groups"),
cross_attention_dim=pixart_config.get("cross_attention_dim"),
attention_bias=pixart_config.get("attention_bias"),
sample_size=pixart_config.get("sample_size"),
patch_size=pixart_config.get("patch_size"),
activation_fn=pixart_config.get("activation_fn"),
num_embeds_ada_norm=pixart_config.get("num_embeds_ada_norm"),
upcast_attention=pixart_config.get("upcast_attention"),
norm_type=pixart_config.get("norm_type"),
norm_elementwise_affine=pixart_config.get("norm_elementwise_affine"),
norm_eps=pixart_config.get("norm_eps"),
caption_channels=pixart_config.get("caption_channels"),
attention_type=pixart_config.get("attention_type")
)
# controlnet = init_controlnet(controlnet, causal_dit)
del transformer
transformer_lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_rank,
# use_dora=True,
init_lora_weights="gaussian",
target_modules=["to_k",
"to_q",
"to_v",
"to_out.0",
"proj_in",
"proj_out",
"ff.net.0.proj",
"ff.net.2",
"proj",
"linear",
"linear_1",
"linear_2"],#ff.net.0.proj ff.net.2
)
causal_dit.add_adapter(transformer_lora_config)
lora_state_dict = torch.load(os.path.join(model_global_path, 'shadow_ckpt', 'transformer_lora_pos.bin'), map_location='cpu')
causal_dit.load_state_dict(lora_state_dict, strict=False)
controlnet_state_dict = torch.load(os.path.join(model_global_path, 'shadow_ckpt', 'controlnet.bin'), map_location='cpu')
controlnet.load_state_dict(controlnet_state_dict, strict=True)
causal_dit.to('cuda', dtype=weight_dtype)
controlnet.to('cuda', dtype=weight_dtype)
pipeline = CobraPixArtAlphaPipeline.from_pretrained(
pretrained_model_name_or_path,
transformer=causal_dit,
controlnet=controlnet,
safety_checker=None,
revision=None,
variant=None,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to("cuda")
print('loaded pipeline')
@spaces.GPU
def change_ckpt(style):
weight_dtype = torch.float16
if style == 'line':
MultiResNetModel_path = os.path.join(model_global_path, 'line_GSRP', 'MultiResNetModel.bin')
causal_dit_lora_path = os.path.join(model_global_path, 'line_ckpt', 'transformer_lora_pos.bin')
controlnet_path = os.path.join(model_global_path, 'line_ckpt', 'controlnet.bin')
elif style == 'line + shadow':
MultiResNetModel_path = os.path.join(model_global_path, 'shadow_GSRP', 'MultiResNetModel.bin')
causal_dit_lora_path = os.path.join(model_global_path, 'shadow_ckpt', 'transformer_lora_pos.bin')
controlnet_path = os.path.join(model_global_path, 'shadow_ckpt', 'controlnet.bin')
else:
raise ValueError("Invalid style: {}".format(style))
global pipeline
global MultiResNetModel
global cur_style
MultiResNetModel.load_state_dict(torch.load(MultiResNetModel_path, map_location='cpu'), strict=True)
MultiResNetModel.to('cuda', dtype=weight_dtype)
lora_state_dict = torch.load(causal_dit_lora_path, map_location='cpu')
pipeline.transformer.load_state_dict(lora_state_dict, strict=False)
controlnet_state_dict = torch.load(controlnet_path, map_location='cpu')
pipeline.controlnet.load_state_dict(controlnet_state_dict, strict=True)
pipeline.transformer.to('cuda', dtype=weight_dtype)
pipeline.controlnet.to('cuda', dtype=weight_dtype)
print('loaded {} ckpt'.format(style))
return style
@spaces.GPU
def fix_random_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def process_multi_images(files):
images = [Image.open(file.name) for file in files]
imgs = []
for i, img in enumerate(images):
imgs.append(img)
return imgs
@spaces.GPU
def extract_lines(image):
global line_model
line_model.cuda()
src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
rows = int(np.ceil(src.shape[0] / 16)) * 16
cols = int(np.ceil(src.shape[1] / 16)) * 16
patch = np.ones((1, 1, rows, cols), dtype="float32")
patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src
tensor = torch.from_numpy(patch).cuda()
with torch.no_grad():
y = line_model(tensor)
yc = y.cpu().numpy()[0, 0, :, :]
yc[yc > 255] = 255
yc[yc < 0] = 0
outimg = yc[0:src.shape[0], 0:src.shape[1]]
outimg = outimg.astype(np.uint8)
outimg = Image.fromarray(outimg)
torch.cuda.empty_cache()
return outimg
@spaces.GPU
def extract_line_image(query_image_, resolution):
tar_width, tar_height = resolution
query_image = query_image_.resize((tar_width, tar_height))
query_image = query_image.convert('L').convert('RGB')
extracted_line = extract_lines(query_image)
extracted_line = extracted_line.convert('L').convert('RGB')
torch.cuda.empty_cache()
return extracted_line, Image.new('RGB', (tar_width, tar_height), 'black')
@spaces.GPU
def extract_sketch_line_image(query_image_, input_style):
resolution = get_rate(query_image_)
extracted_line, hint_mask = extract_line_image(query_image_, resolution)
extracted_sketch = extracted_line
extracted_sketch_line = Image.blend(extracted_sketch, extracted_line, 0.5)
extracted_sketch_line_ori = copy.deepcopy(extracted_sketch_line)
extracted_sketch_line_np = np.array(extracted_sketch_line)
# extracted_sketch_line_np[extracted_sketch_line_np < 236] = 0
# extracted_sketch_line_np[extracted_sketch_line_np >= 236] = 255
extracted_sketch_line = Image.fromarray(np.uint8(extracted_sketch_line_np))
if input_style == 'line + shadow':
print('line + shadow sketch')
black_rate = 74
black_value = 18
gary_rate = 155
up_bound = 145
ori_np = np.array(extracted_sketch_line_ori)
query_image_np = np.array(query_image_.resize(resolution).convert('L').convert('RGB'))
extracted_sketch_line_np = np.array(extracted_sketch_line.convert('L').convert('RGB'))
ori_np[query_image_np <= black_rate] = black_value
ori_np[(ori_np > gary_rate) & (query_image_np < up_bound) & (query_image_np > black_rate)] = gary_rate
extracted_sketch_line_ori = Image.fromarray(np.uint8(ori_np))
extracted_sketch_line_np[query_image_np <= black_rate] = black_value
extracted_sketch_line_np[(extracted_sketch_line_np > gary_rate) & (query_image_np < up_bound) & (query_image_np > black_rate)] = gary_rate
extracted_sketch_line = Image.fromarray(np.uint8(extracted_sketch_line_np))
return extracted_sketch_line.convert('RGB'), extracted_sketch_line.convert('RGB'), hint_mask, query_image_, extracted_sketch_line_ori.convert('RGB'), resolution
@spaces.GPU(duration=180)
def colorize_image(input_style, extracted_line, reference_images, resolution, seed, num_inference_steps, top_k, hint_mask=None, hint_color=None, query_image_origin=None, extracted_image_ori=None):
if extracted_line is None:
gr.Info("Please preprocess the image first")
raise ValueError("Please preprocess the image first")
reference_images = process_multi_images(reference_images)
fix_random_seeds(seed)
global pipeline
global MultiResNetModel
global cur_style
if input_style != cur_style:
gr.Info("Loading the model...")
change_ckpt(input_style)
cur_style = input_style
tar_width, tar_height = resolution
gr.Info("Image retrieval in progress...")
query_image_bw = extracted_line.resize((tar_width, tar_height))
query_image = query_image_bw.convert('RGB')
query_image_origin = query_image_origin.resize((tar_width, tar_height))
query_image_vae = extracted_image_ori.resize((int(tar_width*1.5), int(tar_height*1.5)))
reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images]
query_patches_pil = process_image_Q_varres(query_image_origin, tar_width, tar_height)
reference_patches_pil = []
for reference_image in reference_images:
reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height)
with torch.no_grad():
clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
query_embeddings = image_encoder(clip_img).image_embeds
reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil]
clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
reference_embeddings = image_encoder(clip_img).image_embeds
cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1)
len_ref = len(reference_patches_pil)
# print(cosine_similarities)
sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist()
top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices]
available_ref_patches = [[],[],[],[]]
for i in range(len(top_k_indices)):
for j in range(top_k):
available_ref_patches[i].append(reference_patches_pil[top_k_indices[i][j]].resize((tar_width//2, tar_height//2)).convert('RGB'))
flat_available_ref_patches = [item for sublist in available_ref_patches for item in sublist]
# 正方形拼接 flat_available_ref_patches
grid_N = int(np.ceil(np.sqrt(len(flat_available_ref_patches))))
small_tar_width = tar_width//grid_N
small_tar_height = tar_height//grid_N
grid_img = Image.new('RGB', (grid_N*small_tar_width, grid_N*small_tar_height), 'black')
for i in range(len(flat_available_ref_patches)):
grid_img.paste(flat_available_ref_patches[i].resize((small_tar_width, small_tar_height)), (i%grid_N*small_tar_width, int(i/grid_N)*small_tar_height))
# grid_img 添加文字"Reference images"
draw = ImageDraw.Draw(grid_img)
draw.text((0, 0), "Reference Images", fill='red', font_size=50)
gr.Info("Model inference in progress...")
generator = torch.Generator(device='cuda').manual_seed(seed)
hint_mask = hint_mask.resize((tar_width//8, tar_height//8)).convert('RGB')
hint_color = hint_color.convert('RGB')
colorized_image = pipeline(
cond_input=query_image_bw.convert('RGB'),
cond_refs=available_ref_patches,
hint_mask=hint_mask,
hint_color=hint_color,
num_inference_steps=num_inference_steps,
generator = generator,
)[0][0]
gr.Info("Post-processing image...")
with torch.no_grad():
up_img = colorized_image.resize(query_image_vae.size)
test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype)
query_image_vae_ = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype)
h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True)
h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae_, return_dict = False, hidden_flag = True)
hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))]
hidden_list = MultiResNetModel(hidden_list_double)
output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0]
output[output > 1] = 1
output[output < -1] = -1
high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB")
gr.Info("Colorization complete!")
torch.cuda.empty_cache()
output_gallery = [high_res_image, query_image_bw, hint_mask, hint_color, grid_img]
return output_gallery
# Function to get color value from reference image
def get_color_value(reference_image, evt: gr.SelectData):
if reference_image is None:
return "Please upload a reference image first."
x, y = evt.index
color_value = reference_image[y, x]
return f"Get Color value: {color_value}", color_value
# Function to draw a square on the line drawing image
def draw_square(line_drawing_image_pil, hint_mask, color_value, evt: gr.SelectData):
line_drawing_image = np.array(line_drawing_image_pil)
# line_drawing_image = np.array(Image.new('RGB', line_drawing_image_pil.size, 'black'))
hint_mask = np.array(hint_mask)
if line_drawing_image is None:
return "Please upload a line drawing image first."
if color_value is None:
return "Please pick a color from the reference image first."
x, y = evt.index
# Calculate square boundaries
start_x = max(0, x - 8)
start_y = max(0, y - 8)
end_x = min(line_drawing_image.shape[1], x + 8)
end_y = min(line_drawing_image.shape[0], y + 8)
# Draw the square
line_drawing_image[start_y:end_y, start_x:end_x] = color_value
line_drawing_image_pil = Image.fromarray(np.uint8(line_drawing_image))
hint_mask[start_y:end_y, start_x:end_x] = 255
hint_mask_pil = Image.fromarray(np.uint8(hint_mask))
return line_drawing_image_pil, hint_mask_pil
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center;">
<h1 style="text-align: center; font-size: 3em;">🎨 Cobra:</h1>
<h3 style="text-align: center; font-size: 1.8em;">Efficient Line Art COlorization with BRoAder References</h3>
<p style="text-align: center; font-weight: bold;">
<a href="https://zhuang2002.github.io/Cobra/">Project Page</a> |
<a href="https://arxiv.org">ArXiv Preprint</a> |
<a href="https://github.com/Zhuang2002/Cobra">GitHub Repository</a>
</p>
<p style="text-align: center; font-weight: bold;">
NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient.
</p>
<p style="text-align: left; font-size: 1.1em;">
Welcome to the demo of <strong>Cobra</strong>. Follow the steps below to explore the capabilities of our model:
</p>
</div>
<div style="text-align: left; margin: 0 auto;">
<ol style="font-size: 1.1em;">
<li>Choose your input style: either line + shadow or line only.</li>
<li>Upload your image: Click the 'Upload' button to select the image you want to colorize.</li>
<li>Preprocess the image: Click the 'Preprocess' button to extract the line art from your image.</li>
<li>(Optional) Obtain color values and add color hints: Upload an image to the left area and click to get color values; then, add color hints to the line art on the right.</li>
<li>Upload reference images: Upload several reference images to help guide the colorization process.</li>
<li>(Optional) Set inference parameters: Adjust the inference settings as needed.</li>
<li>Run: Click the <b>Colorize</b> button to start the process.</li>
</ol>
<p>
⏱️ <b>ZeroGPU Time Limit</b>: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine.
</p>
</div>
<div style="text-align: center;">
<p style="text-align: center; font-weight: bold;">
注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。
</p>
<p style="text-align: left; font-size: 1.1em;">
欢迎使用 <strong>Cobra</strong> 演示。请按照以下步骤探索我们模型的能力:
</p>
</div>
<div style="text-align: left; margin: 0 auto;">
<ol style="font-size: 1.1em;">
<li>选择输入样式:线条+阴影或仅线条。</li>
<li>上传您的图像:点击“上传”按钮选择您想要上色的图像。</li>
<li>预处理图像:点击“预处理”按钮从您的图像中提取线稿。</li>
<li>(可选)获取颜色值并添加颜色提示:上传一张图像到左侧区域,点击获取颜色值;然后,为右侧的线稿添加颜色提示。</li>
<li>上传参考图像:上传多个参考图像以帮助引导上色过程。</li>
<li>(可选)设置推理参数:根据需要调整推理设置。</li>
<li>运行:点击 <b>上色</b> 按钮开始处理。</li>
</ol>
<p>
⏱️ <b>ZeroGPU时间限制</b>:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。
</p>
</div>
"""
)
# extracted_line = gr.State()
# example_loading = gr.State(value=None)
hint_mask = gr.State()
hint_color = gr.State()
query_image_origin = gr.State()
resolution = gr.State()
extracted_image_ori = gr.State()
style = gr.State()
# updated_mask = gr.State()
# model_name = gr.Textbox(label="Model Name", value=None)
# style = gr.Dropdown(label="Model Name", choices=["line + shadow","line"], value="line + shadow")
with gr.Column():
gr.Markdown("<h2 style='text-align: center;'>Load Model</h2>")
with gr.Row():
model_name = gr.Textbox(label="Model Name", value=None)
with gr.Column():
style = gr.Dropdown(label="Model List", choices=["line + shadow","line"], value="line + shadow")
change_ckpt_button = gr.Button("Load Model")
change_ckpt_button.click(change_ckpt, inputs=[style], outputs=[model_name])
# model_name = gr.Textbox(label="Model Name", value=None)
# 添加文字 英文 线稿提取
gr.Markdown("<h2 style='text-align: center;'>Line Drawing Extraction</h2>")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Image to Colorize")
# resolution = gr.Radio(["800x800", "640x1024", "1024x640"], label="Select Resolution(Width*Height)", value="640x1024")
extract_button = gr.Button("Preprocess (Decolorize)")
extracted_image = gr.Image(type="pil", label="Decolorized Result")
gr.Markdown("<h2 style='text-align: center;'>Color Selection 🎨 (Left) and Hint Placement 💡 (Right) - Click with Mouse 🖱️</h2>")
with gr.Row():
with gr.Column():
get_color_img = gr.Image(label="Upload an image to extract colors", type="numpy")
color_value_output = gr.Textbox(label="Color Value")
color_value_state = gr.State()
get_color_img.select(
get_color_value,
[get_color_img],
[color_value_output, color_value_state]
)
with gr.Column():
hint_color = gr.Image(label="Line Drawing Image", type="pil")
# updated_image = gr.Image(label="Updated Image", type="pil")
hint_color.select(
draw_square,
[hint_color, hint_mask, color_value_state],
[hint_color, hint_mask]
)
gr.Markdown("<h2 style='text-align: center;'>Retrieval and Colorization</h2>")
with gr.Row():
reference_images = gr.Files(label="Reference Images (Upload multiple)", file_count="multiple")
with gr.Column():
output_gallery = gr.Gallery(label="Colorization Results", type="pil")
seed = gr.Slider(label="Random Seed", minimum=0, maximum=100000, value=0, step=1)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=10, step=1)
colorize_button = gr.Button("Colorize")
top_k = gr.Slider(label="Top K (Total Reference Images: 4K) ", minimum=1, maximum=50, value=3, step=1)
extract_button.click(
extract_sketch_line_image,
inputs=[input_image, model_name],
outputs=[extracted_image,
hint_color,
hint_mask,
query_image_origin,
extracted_image_ori,
resolution
]
)
colorize_button.click(
colorize_image,
inputs=[model_name, extracted_image, reference_images, resolution, seed, num_inference_steps, top_k, hint_mask, hint_color, query_image_origin, extracted_image_ori],
outputs=output_gallery
)
with gr.Column():
gr.Markdown("### Quick Examples")
gr.Examples(
examples=examples,
inputs=[input_image, reference_images, model_name, seed, num_inference_steps, top_k],
label="Examples",
examples_per_page=8,
)
gr.HTML('<a href="https://github.com/zhuang2002/Cobra"><img src="https://img.shields.io/github/stars/zhuang2002/Cobra" alt="GitHub Stars"></a>')
gr.Markdown(article)
demo.launch() |