Commit
·
db1702e
1
Parent(s):
33f9b9a
Adding components
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ from NeuralTextGenerator import BertTextGenerator
|
|
14 |
|
15 |
# generator = pipeline("sentiment-analysis")
|
16 |
|
17 |
-
print('dfg')
|
18 |
model_name = "JuanJoseMV/BERT_text_gen" #"dbmdz/bert-base-italian-uncased"
|
19 |
en_model = BertTextGenerator(model_name)
|
20 |
tokenizer = en_model.tokenizer
|
@@ -24,8 +24,41 @@ device = model.device
|
|
24 |
en_model.tokenizer.add_special_tokens({'additional_special_tokens': ['[POSITIVE-0]', '[POSITIVE-1]', '[POSITIVE-2]','[NEGATIVE-0]', '[NEGATIVE-1]', '[NEGATIVE-2]']})
|
25 |
en_model.model.resize_token_embeddings(len(en_model.tokenizer))
|
26 |
|
27 |
-
def classify(sentiment):
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
'batch_size': 2,
|
30 |
'avg_len':30,
|
31 |
'max_len':50,
|
@@ -33,9 +66,9 @@ def classify(sentiment):
|
|
33 |
'generation_method':'parallel',
|
34 |
'sample': True,
|
35 |
'burnin': 450,
|
36 |
-
'max_iter':
|
37 |
'top_k': 100,
|
38 |
-
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2]
|
39 |
# 'verbose': True
|
40 |
}
|
41 |
sents = en_model.generate(**parameters)
|
@@ -45,14 +78,18 @@ def classify(sentiment):
|
|
45 |
gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
46 |
|
47 |
return gen_text
|
|
|
48 |
|
49 |
-
demo = gr.Blocks()
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
demo.launch()
|
|
|
14 |
|
15 |
# generator = pipeline("sentiment-analysis")
|
16 |
|
17 |
+
# print('dfg')
|
18 |
model_name = "JuanJoseMV/BERT_text_gen" #"dbmdz/bert-base-italian-uncased"
|
19 |
en_model = BertTextGenerator(model_name)
|
20 |
tokenizer = en_model.tokenizer
|
|
|
24 |
en_model.tokenizer.add_special_tokens({'additional_special_tokens': ['[POSITIVE-0]', '[POSITIVE-1]', '[POSITIVE-2]','[NEGATIVE-0]', '[NEGATIVE-1]', '[NEGATIVE-2]']})
|
25 |
en_model.model.resize_token_embeddings(len(en_model.tokenizer))
|
26 |
|
27 |
+
# def classify(sentiment):
|
28 |
+
# parameters = {'n_sentences': 1,
|
29 |
+
# 'batch_size': 2,
|
30 |
+
# 'avg_len':30,
|
31 |
+
# 'max_len':50,
|
32 |
+
# # 'std_len' : 3,
|
33 |
+
# 'generation_method':'parallel',
|
34 |
+
# 'sample': True,
|
35 |
+
# 'burnin': 450,
|
36 |
+
# 'max_iter': 100,
|
37 |
+
# 'top_k': 100,
|
38 |
+
# 'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] Ronaldo",
|
39 |
+
# # 'verbose': True
|
40 |
+
# }
|
41 |
+
# sents = en_model.generate(**parameters)
|
42 |
+
# gen_text = ''
|
43 |
+
|
44 |
+
# for i, s in enumerate(sents):
|
45 |
+
# gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
46 |
+
|
47 |
+
# return gen_text
|
48 |
+
|
49 |
+
# demo = gr.Blocks()
|
50 |
+
|
51 |
+
# with demo:
|
52 |
+
# gr.Markdown()
|
53 |
+
# inputs = gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate") # gr.Dropdown(["POSITIVE", "NEGATIVE"], label="Sentiment to generate")
|
54 |
+
# output = gr.Textbox(label="Generated tweet")
|
55 |
+
# b1 = gr.Button("Generate")
|
56 |
+
# b1.click(classify, inputs=inputs, outputs=output)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def sentence_builder(n_sentences, max_iter, sentiment, seed_text):
|
61 |
+
parameters = {'n_sentences': n_sentences,
|
62 |
'batch_size': 2,
|
63 |
'avg_len':30,
|
64 |
'max_len':50,
|
|
|
66 |
'generation_method':'parallel',
|
67 |
'sample': True,
|
68 |
'burnin': 450,
|
69 |
+
'max_iter': max_iter,
|
70 |
'top_k': 100,
|
71 |
+
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] {seed_text}",
|
72 |
# 'verbose': True
|
73 |
}
|
74 |
sents = en_model.generate(**parameters)
|
|
|
78 |
gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
79 |
|
80 |
return gen_text
|
81 |
+
# return f"""The {quantity} {animal}s from {" and ".join(countries)} went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}"""
|
82 |
|
|
|
83 |
|
84 |
+
demo = gr.Interface(
|
85 |
+
sentence_builder,
|
86 |
+
[
|
87 |
+
gr.Slider(1, 15, value=2, label="Num. Tweets", info="Number of tweets to be generated."),
|
88 |
+
gr.Slider(50, 500, value=100, label="Max. iter", info="Maximum number of iterations for the generation."),
|
89 |
+
gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate"),
|
90 |
+
gr.Textbox('', label="Seed text", info="Seed text for the generation.")
|
91 |
+
],
|
92 |
+
"text",
|
93 |
+
)
|
94 |
|
95 |
demo.launch()
|