JuanJoseMV commited on
Commit
56e2e37
·
1 Parent(s): 551f88f

Adding model

Browse files
Files changed (1) hide show
  1. app.py +47 -4
app.py CHANGED
@@ -2,8 +2,51 @@ import gradio as gr
2
 
3
  # model =
4
 
5
- def greet(sentiment):
6
- return "Hello " + sentiment + "!!"
7
 
8
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
9
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  # model =
4
 
5
+ # def greet(sentiment):
6
+ # return "Hello " + sentiment + "!!"
7
 
8
+ # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
9
+ # iface.launch()
10
+
11
+ import gradio as gr
12
+ from NeuralTextGenerator import BertTextGenerator
13
+ # from transformers import pipeline
14
+
15
+ # generator = pipeline("sentiment-analysis")
16
+
17
+
18
+ model_name = "JuanJoseMV/BERT_text_gen" #"dbmdz/bert-base-italian-uncased"
19
+ en_model = BertTextGenerator(model_name)
20
+ tokenizer = en_model.tokenizer
21
+ model = en_model.model
22
+ device = model.device
23
+
24
+ def classify(sentiment):
25
+ parameters = {'n_sentences': 10,
26
+ 'batch_size': 2,
27
+ 'avg_len':30,
28
+ 'max_len':50,
29
+ # 'std_len' : 3,
30
+ 'generation_method':'parallel',
31
+ 'sample': True,
32
+ 'burnin': 450,
33
+ 'max_iter': 500,
34
+ 'top_k': 100,
35
+ 'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2]",
36
+ # 'verbose': True
37
+ }
38
+ sents = en_model.generate(**parameters)
39
+ gen_text = '\n'.join(sents)
40
+
41
+ return gen_text
42
+
43
+ demo = gr.Blocks()
44
+
45
+ with demo:
46
+ gr.Markdown()
47
+ inputs = gr.Dropdown(value=["POSITIVE", "NEGATIVE"], label="Sentiment to generate")
48
+ output = gr.Textbox(label="Generated tweet")
49
+ b1 = gr.Button("Generate")
50
+ b1.click(classify, inputs=inputs, outputs=output)
51
+
52
+ demo.launch()