Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import os | |
from huggingface_hub import login | |
login(os.environ["HF_TOKEN"]) | |
emotion_classifier = pipeline("text-classification", model="shengqizhao0124/emotion_trainer", return_all_scores=True) | |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base") | |
candidate_tasks = [ | |
"change mobile plan", "top up balance", "report service outage", | |
"ask for billing support", "reactivate service", "cancel subscription", | |
"check account status", "upgrade device" | |
] | |
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"} | |
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"} | |
def refine_emotion_label(text, model_emotion): | |
text_lower = text.lower() | |
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"] | |
exclamations = text.count("!") | |
upper_words = sum(1 for w in text.split() if w.isupper()) | |
signal_score = sum([ | |
any(word in text_lower for word in urgent_keywords), | |
exclamations >= 2, | |
upper_words >= 1 | |
]) | |
if model_emotion.lower() in {"joy", "neutral", "sadness"} and signal_score >= 2: | |
return "urgency" | |
return model_emotion | |
def get_emotion_label(result, text): | |
sorted_emotions = sorted(result[0], key=lambda x: x['score'], reverse=True) | |
return refine_emotion_label(text, sorted_emotions[0]['label']) | |
def get_emotion_score(emotion): | |
if emotion.lower() in urgent_emotions: | |
return 1.0 | |
elif emotion.lower() in moderate_emotions: | |
return 0.6 | |
else: | |
return 0.2 | |
def generate_response(intent, human=True): | |
if human: | |
prompt = ( | |
f"You are a telecom agent. The customer intends to '{intent}'. " | |
"Give a 3-part polite reply: 1) Greeting, 2) Mention current plan (fictional) and suggest better one, 3) Ask if want to proceed." | |
) | |
result = text_generator(prompt, max_new_tokens=150, do_sample=False) | |
return result[0]['generated_text'].strip() | |
else: | |
return f"[Below is a link to the service you needοΌ{intent} β https://support.example.com/{intent.replace(' ', '_')}]\\n[If your problem still can not be solved, welcome to continue to consult, we will continue to serve you!]" | |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide") | |
st.sidebar.title("π Customer Selector") | |
if "customers" not in st.session_state: | |
st.session_state.customers = {"Customer A": [], "Customer B": [], "Customer C": []} | |
if "chat_sessions" not in st.session_state: | |
st.session_state.chat_sessions = {} | |
selected_customer = st.sidebar.selectbox("Choose a customer:", list(st.session_state.customers.keys())) | |
if selected_customer not in st.session_state.chat_sessions: | |
st.session_state.chat_sessions[selected_customer] = { | |
"chat": [], "system_result": None, | |
"agent_reply": "", "support_required": "", "user_input": "" | |
} | |
session = st.session_state.chat_sessions[selected_customer] | |
st.title("Smart Customer Support Assistant (for Agents Only)") | |
# Conversation UI | |
st.markdown("### Conversation") | |
for msg in session["chat"]: | |
avatar = "π€" if msg['role'] == 'user' else ("π€" if msg.get("auto") else "π¨βπΌ") | |
with st.chat_message(msg['role'], avatar=avatar): | |
if msg["role"] == "user" and "emotion" in msg: | |
st.markdown(f"<div style='text-align:right;font-size:0.9em;color:gray;'>Emotion: {msg['emotion'].capitalize()}</div>", unsafe_allow_html=True) | |
st.markdown(msg['content']) | |
# Input & Analyze | |
col1, col2 = st.columns([6, 1]) | |
with col1: | |
user_input = st.text_input("Enter customer message:", key="customer_input") | |
with col2: | |
if st.button("Analyze"): | |
if user_input.strip(): | |
emotion_result = emotion_classifier(user_input) | |
emotion_label = get_emotion_label(emotion_result, user_input) | |
emotion_score = get_emotion_score(emotion_label) | |
session["chat"].append({"role": "user", "content": user_input, "emotion": emotion_label}) | |
intent_result = intent_classifier(user_input, candidate_tasks) | |
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3] | |
content_score = 0.0 | |
if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]): | |
content_score += 0.4 | |
if any(label in ["top up balance", "reactivate service"] for label in top_intents): | |
content_score += 0.4 | |
final_score = 0.5 * emotion_score + 0.5 * content_score | |
if final_score < 0.5 and top_intents: | |
intent = top_intents[0] | |
response = generate_response(intent, human=False) | |
session["chat"].append({"role": "assistant", "content": response, "auto": True}) | |
session["system_result"] = None | |
session["support_required"] = "π’ Automated response handled this request." | |
else: | |
session["system_result"] = { | |
"emotion": emotion_label, | |
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm", | |
"intents": top_intents | |
} | |
session["support_required"] = "π΄ Human support required." | |
session["agent_reply"] = "" | |
st.rerun() | |
# Agent panel | |
if session["support_required"]: | |
st.markdown(f"### {session['support_required']}") | |
st.subheader("Agent Response Console") | |
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"], key="agent_reply_box") | |
if st.button("Send Reply"): | |
if session["agent_reply"].strip(): | |
session["chat"].append({"role": "assistant", "content": session["agent_reply"], "auto": False}) | |
session["agent_reply"] = "" | |
session["system_result"] = None | |
session["support_required"] = "" | |
st.rerun() | |
# Show customer analysis | |
if session["system_result"] is not None: | |
st.markdown("#### Customer Status") | |
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}") | |
st.markdown(f"- **Tone:** {session['system_result']['tone']}") | |
st.markdown("#### Detected Customer Needs") | |
for intent in session["system_result"]["intents"]: | |
suggestion = generate_response(intent, human=True) | |
st.markdown(f"**β’ {intent.capitalize()}**") | |
st.code(suggestion) | |
if st.button("End Conversation"): | |
session["chat"] = [] | |
session["system_result"] = None | |
session["agent_reply"] = "" | |
session["support_required"] = "" | |
session["user_input"] = "" | |
st.success("Conversation ended and cleared.") | |
st.rerun() | |