Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ import torch
|
|
10 |
from transformers import Qwen2VLForConditionalGeneration, GenerationConfig, AutoProcessor
|
11 |
import spaces
|
12 |
|
13 |
-
from vllm import LLM, SamplingParams
|
14 |
|
15 |
def extract_answer_content(text: str) -> str:
|
16 |
"""
|
@@ -63,10 +62,6 @@ SYSTEM_PROMPT = (
|
|
63 |
processor = AutoProcessor.from_pretrained("JosephZ/qwen2vl-7b-sft-grpo-close-sgg", max_pixels=1024*28*28)
|
64 |
|
65 |
device='cuda' if torch.cuda.is_available() else "cpu"
|
66 |
-
model_name = "JosephZ/qwen2vl-7b-sft-grpo-close-sgg"
|
67 |
-
|
68 |
-
|
69 |
-
"""
|
70 |
model = Qwen2VLForConditionalGeneration.from_pretrained("JosephZ/qwen2vl-7b-sft-grpo-close-sgg",
|
71 |
torch_dtype=torch.bfloat16,
|
72 |
device_map=device)
|
@@ -80,25 +75,9 @@ generation_config=GenerationConfig(
|
|
80 |
max_new_tokens=2048,
|
81 |
use_cache=True
|
82 |
)
|
83 |
-
"""
|
84 |
-
model = LLM(
|
85 |
-
model=model_name,
|
86 |
-
limit_mm_per_prompt={"image": 1},
|
87 |
-
dtype='bfloat16',
|
88 |
-
#device=device,
|
89 |
-
max_model_len=4096,
|
90 |
-
mm_processor_kwargs= { "max_pixels": 1024*28*28, "min_pixels": 4*28*28},
|
91 |
-
)
|
92 |
-
sampling_params = SamplingParams(
|
93 |
-
temperature=0.01,
|
94 |
-
top_k=1,
|
95 |
-
top_p=0.001,
|
96 |
-
repetition_penalty=1.0,
|
97 |
-
max_tokens=2048,
|
98 |
-
)
|
99 |
|
100 |
def build_prompt(image, user_text):
|
101 |
-
base64_image = encode_image_to_base64(image)
|
102 |
messages = [
|
103 |
{
|
104 |
"role": "system",
|
@@ -107,8 +86,8 @@ def build_prompt(image, user_text):
|
|
107 |
{
|
108 |
"role": "user",
|
109 |
"content": [
|
110 |
-
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}},
|
111 |
-
|
112 |
{"type": "text", "text": user_text},
|
113 |
],
|
114 |
},
|
@@ -176,17 +155,30 @@ def scale_box(box, scale):
|
|
176 |
def generate_sgg(image):
|
177 |
global model
|
178 |
|
|
|
|
|
|
|
179 |
|
180 |
iw, ih = image.size
|
181 |
scale_factors = (iw / 1000.0, ih / 1000.0)
|
182 |
-
|
183 |
conversation = build_prompt(image, PROMPT_CLOSE)
|
|
|
184 |
|
|
|
|
|
|
|
|
|
185 |
with torch.no_grad():
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
output_text = output_texts[0]
|
190 |
resp = extract_answer_content(output_text)
|
191 |
|
192 |
try:
|
@@ -226,4 +218,4 @@ gr.Interface(
|
|
226 |
outputs=[gr.Image(type="pil"), gr.Textbox(label="Scene Graph")],
|
227 |
title="R1-SGG: Compile Scene Graphs with Reinforcement Learning",
|
228 |
description="Upload an image and generate a structured scene graph in JSON format."
|
229 |
-
).launch(share=True)
|
|
|
10 |
from transformers import Qwen2VLForConditionalGeneration, GenerationConfig, AutoProcessor
|
11 |
import spaces
|
12 |
|
|
|
13 |
|
14 |
def extract_answer_content(text: str) -> str:
|
15 |
"""
|
|
|
62 |
processor = AutoProcessor.from_pretrained("JosephZ/qwen2vl-7b-sft-grpo-close-sgg", max_pixels=1024*28*28)
|
63 |
|
64 |
device='cuda' if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
65 |
model = Qwen2VLForConditionalGeneration.from_pretrained("JosephZ/qwen2vl-7b-sft-grpo-close-sgg",
|
66 |
torch_dtype=torch.bfloat16,
|
67 |
device_map=device)
|
|
|
75 |
max_new_tokens=2048,
|
76 |
use_cache=True
|
77 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def build_prompt(image, user_text):
|
80 |
+
#base64_image = encode_image_to_base64(image)
|
81 |
messages = [
|
82 |
{
|
83 |
"role": "system",
|
|
|
86 |
{
|
87 |
"role": "user",
|
88 |
"content": [
|
89 |
+
#{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}},
|
90 |
+
{"type": "image"},
|
91 |
{"type": "text", "text": user_text},
|
92 |
],
|
93 |
},
|
|
|
155 |
def generate_sgg(image):
|
156 |
global model
|
157 |
|
158 |
+
device='cuda' if torch.cuda.is_available() else "cpu"
|
159 |
+
if next(model.parameters()).device != torch.device(device):
|
160 |
+
model = model.to(device)
|
161 |
|
162 |
iw, ih = image.size
|
163 |
scale_factors = (iw / 1000.0, ih / 1000.0)
|
164 |
+
|
165 |
conversation = build_prompt(image, PROMPT_CLOSE)
|
166 |
+
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
167 |
|
168 |
+
inputs = processor(
|
169 |
+
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
|
170 |
+
)
|
171 |
+
inputs = inputs.to(model.device)
|
172 |
with torch.no_grad():
|
173 |
+
output_ids = model.generate(**inputs, generation_config=generation_config)
|
174 |
+
generated_ids = [
|
175 |
+
output_ids[len(input_ids) :]
|
176 |
+
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
177 |
+
]
|
178 |
+
output_text = processor.batch_decode(
|
179 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
180 |
+
)[0]
|
181 |
|
|
|
182 |
resp = extract_answer_content(output_text)
|
183 |
|
184 |
try:
|
|
|
218 |
outputs=[gr.Image(type="pil"), gr.Textbox(label="Scene Graph")],
|
219 |
title="R1-SGG: Compile Scene Graphs with Reinforcement Learning",
|
220 |
description="Upload an image and generate a structured scene graph in JSON format."
|
221 |
+
).launch(share=True)
|