Spaces:
Running
Running
File size: 7,188 Bytes
12b7ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import argparse
import time
from tqdm import tqdm
import evaluate
import random
import re
import unimernet.tasks as tasks
import os
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
from tabulate import tabulate
from rapidfuzz.distance import Levenshtein
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from unimernet.common.config import Config
# imports modules for registration
from unimernet.datasets.builders import *
from unimernet.models import *
from unimernet.processors import *
from unimernet.tasks import *
from unimernet.processors import load_processor
class MathDataset(Dataset):
def __init__(self, image_paths, transform=None):
self.image_paths = image_paths
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
raw_image = Image.open(self.image_paths[idx])
if self.transform:
image = self.transform(raw_image)
return image
def load_data(image_path, math_file):
"""
Load a list of image paths and their corresponding formulas.
The function skips empty lines and lines without corresponding images.
Args:
image_path (str): The path to the directory containing the image files.
math_file (str): The path to the text file containing the formulas.
Returns:
list, list: A list of image paths and a list of corresponding formula
"""
image_names = [f for f in sorted(os.listdir(image_path))]
image_paths = [os.path.join(image_path, f) for f in image_names]
math_gts = []
with open(math_file, 'r') as f:
# load maths which
for i, line in enumerate(f, start=1):
image_name = f'{i-1:07d}.png'
if line.strip() and image_name in image_names:
math_gts.append(line.strip())
if len(image_paths) != len(math_gts):
raise ValueError("The number of images does not match the number of formulas.")
return image_paths, math_gts
def normalize_text(text):
"""Remove unnecessary whitespace from LaTeX code."""
text_reg = r'(\\(operatorname|mathrm|text|mathbf)\s?\*? {.*?})'
letter = '[a-zA-Z]'
noletter = '[\W_^\d]'
names = [x[0].replace(' ', '') for x in re.findall(text_reg, text)]
text = re.sub(text_reg, lambda match: str(names.pop(0)), text)
news = text
while True:
text = news
news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, noletter), r'\1\2', text)
news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, letter), r'\1\2', news)
news = re.sub(r'(%s)\s+?(%s)' % (letter, noletter), r'\1\2', news)
if news == text:
break
return text
def score_text(predictions, references):
bleu = evaluate.load("bleu", keep_in_memory=True, experiment_id=random.randint(1,1e8))
bleu_results = bleu.compute(predictions=predictions, references=references)
lev_dist = []
for p, r in zip(predictions, references):
lev_dist.append(Levenshtein.normalized_distance(p, r))
return {
'bleu': bleu_results["bleu"],
'edit': sum(lev_dist) / len(lev_dist)
}
def setup_seeds(seed=3):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--result_path", type=str, help="Path to json file to save result to.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def main():
setup_seeds()
# Load Model and Processor
start = time.time()
cfg = Config(parse_args())
task = tasks.setup_task(cfg)
model = task.build_model(cfg)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
model.to(device)
model.eval()
print(f'arch_name:{cfg.config.model.arch}')
print(f'model_type:{cfg.config.model.model_type}')
print(f'checkpoint:{cfg.config.model.finetuned}')
print(f'='*100)
end1 = time.time()
# Generate prediction with MFR model
print(f'Device:{device}')
print(f'Load model: {end1 - start:.3f}s')
# Load Data (image and corresponding annotations)
val_names = [
"Simple Print Expression(SPE)",
"Complex Print Expression(CPE)",
"Screen Capture Expression(SCE)",
"Handwritten Expression(HWE)"
]
image_paths = [
"./data/UniMER-Test/spe",
"./data/UniMER-Test/cpe",
"./data/UniMER-Test/sce",
"./data/UniMER-Test/hwe"
]
math_files = [
"./data/UniMER-Test/spe.txt",
"./data/UniMER-Test/cpe.txt",
"./data/UniMER-Test/sce.txt",
"./data/UniMER-Test/hwe.txt"
]
for val_name, image_path, math_file in zip(val_names, image_paths, math_files):
image_list, math_gts = load_data(image_path, math_file)
transform = transforms.Compose([
vis_processor,
])
dataset = MathDataset(image_list, transform=transform)
dataloader = DataLoader(dataset, batch_size=128, num_workers=32)
math_preds = []
for images in tqdm(dataloader):
images = images.to(device)
with torch.no_grad():
output = model.generate({"image": images})
math_preds.extend(output["pred_str"])
# Compute BLEU/METEOR/EditDistance
norm_gts = [normalize_text(gt) for gt in math_gts]
norm_preds = [normalize_text(pred) for pred in math_preds]
print(f'len_gts:{len(norm_gts)}, len_preds={len(norm_preds)}')
print(f'norm_gts[0]:{norm_gts[0]}')
print(f'norm_preds[0]:{norm_preds[0]}')
p_scores = score_text(norm_preds, norm_gts)
write_data= {
"scores": p_scores,
"text": [{"prediction": p, "reference": r} for p, r in zip(norm_preds, norm_gts)]
}
score_table = []
score_headers = ["bleu", "edit"]
score_dirs = ["⬆", "⬇"]
score_table.append([write_data["scores"][h] for h in score_headers])
score_headers = [f"{h} {d}" for h, d in zip(score_headers, score_dirs)]
end2 = time.time()
print(f'Evaluation Set:{val_name}')
print(f'Inference Time: {end2 - end1}s')
print(tabulate(score_table, headers=[*score_headers]))
print('='*100)
if __name__ == "__main__":
main()
|