import os import spaces import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import HfApi import time HF_TOKEN = os.environ.get("HF_TOKEN") MODELS = ["Qwen/Qwen2.5-Coder-0.5B", "Qwen/Qwen2.5-Coder-1.5B"] device = "cuda" if torch.cuda.is_available() else "cpu" model_id = MODELS[0] model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) def load_model(repo_id: str, progress = gr.Progress(track_tqdm=True)): global model, tokenizer api = HfApi(token=HF_TOKEN) if not api.repo_exists(repo_id=repo_id, token=HF_TOKEN): raise gr.Error(f"Model not found: {repo_id}") model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(repo_id) gr.Info(f"Model loaded {repo_id}") return repo_id @spaces.GPU(duration=30) def infer(message: str, sysprompt: str, tokens: int=30): messages = [ {"role": "system", "content": sysprompt}, {"role": "user", "content": message} ] input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(text=[input_text], return_tensors="pt").to(model.device) start = time.time() generated_ids = model.generate(**inputs, max_new_tokens=tokens) end = time.time() elapsed_sec = end - start generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)] output_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(f"Input: {message}") print(f"Output: {output_str}") print(f"Elapsed time: {elapsed_sec} sec.") output_md = f"### {output_str}" info_md = f"### Elapsed time: {elapsed_sec} sec." return output_md, info_md with gr.Blocks() as demo: model_name = gr.Dropdown(label="Model", choices=MODELS, value=MODELS[0], allow_custom_value=True) with gr.Row(): message = gr.Textbox(label="Message", value="", lines=1) sysprompt = gr.Textbox(label="System prompt", value="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", lines=4) tokens = gr.Slider(label="Max tokens", value=30, minimum=1, maximum=2048, step=1) run_button = gr.Button("Run", variant="primary") output_md = gr.Markdown("

") info_md = gr.Markdown("

") gr.on(triggers=[run_button.click, message.submit], fn=infer, inputs=[message, sysprompt, tokens], outputs=[output_md, info_md]) #run_button.click(infer, [message, sysprompt, tokens], [output_md, info_md]) model_name.change(load_model, [model_name], [model_name]) demo.launch()