Spaces:
Running
Running
import streamlit as st | |
from huggingface_hub import InferenceClient | |
from dotenv import load_dotenv | |
import os | |
# Load .env file | |
load_dotenv() | |
# Get API key from environment variable | |
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
st.set_page_config(page_title="Intellicounsel AI Chat", page_icon="π€") | |
# Add system prompt once at the start | |
system_prompt = { | |
"role": "system", | |
"content": ( | |
"You are Intellicounsel, an intelligent and friendly AI advisor that helps students " | |
"with college applications, SOP reviews, resume tips, and academic advice. " | |
"Respond clearly and helpfully, always tailored to the student's needs." | |
) | |
} | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Title | |
st.title("π§ Intellicounsel β AI College Advisor") | |
# User input | |
user_input = st.chat_input("Ask something like SOP tips or university suggestions...") | |
# Show past messages | |
for msg in st.session_state.messages: | |
with st.chat_message(msg["role"]): | |
st.markdown(msg["content"]) | |
# If new input | |
if user_input: | |
st.session_state.messages.append({"role": "user", "content": user_input}) | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
try: | |
client = InferenceClient( | |
model="nvidia/Llama-3_1-Nemotron-Ultra-253B-v1", | |
provider="nebius", | |
api_key=api_key, | |
) | |
# Add system prompt only once at the start of the context | |
full_context = [system_prompt] + st.session_state.messages | |
completion = client.chat.completions.create( | |
model="nvidia/Llama-3_1-Nemotron-Ultra-253B-v1", | |
messages=full_context, | |
max_tokens=2048, | |
) | |
response = completion.choices[0].message.content | |
except Exception as e: | |
response = f"β Error: {e}" | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |