Spaces:
Sleeping
Sleeping
Upload module1.py
Browse files- src/FisrtModule/module1.py +87 -0
src/FisrtModule/module1.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""module1.py
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1AYXXKXRzUU4DWKWbJqvyjSwQ0dVQMS7Y
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
+
from sentence_transformers import SentenceTransformer
|
14 |
+
|
15 |
+
class MisconceptionModel:
|
16 |
+
def __init__(self, model_name, misconception_mapping_path, misconception_embs_paths):
|
17 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ
|
18 |
+
self.model = SentenceTransformer(model_name)
|
19 |
+
self.misconception_mapping = pd.read_parquet(misconception_mapping_path)
|
20 |
+
self.misconception_names = self.misconception_mapping.set_index("MisconceptionId")["MisconceptionName"]
|
21 |
+
self.misconception_embs = [
|
22 |
+
np.load(path) for path in misconception_embs_paths
|
23 |
+
]
|
24 |
+
|
25 |
+
def preprocess(self, df):
|
26 |
+
"""๋ฐ์ดํฐ ํ๋ฆฌํ๋ก์ธ์ฑ"""
|
27 |
+
df_new = df.copy()
|
28 |
+
for col in df.columns[df.dtypes == "object"]:
|
29 |
+
df_new[col] = df_new[col].str.strip()
|
30 |
+
for option in ["A", "B", "C", "D"]:
|
31 |
+
df_new[f"Answer{option}Text"] = df_new[f"Answer{option}Text"].str.replace("Only\n", "Only ")
|
32 |
+
return df_new
|
33 |
+
|
34 |
+
def wide_to_long(self, df):
|
35 |
+
"""๋ฐ์ดํฐ๋ฅผ wide ํ์์์ long ํ์์ผ๋ก ๋ณํ"""
|
36 |
+
rows = []
|
37 |
+
for _, row in df.iterrows():
|
38 |
+
correct_option = row["CorrectAnswer"]
|
39 |
+
correct_text = row[f"Answer{correct_option}Text"]
|
40 |
+
for option in ["A", "B", "C", "D"]:
|
41 |
+
if option == correct_option:
|
42 |
+
continue
|
43 |
+
misconception_id = row.get(f"Misconception{option}Id", np.nan)
|
44 |
+
row_new = row[:"QuestionText"]
|
45 |
+
row_new["CorrectAnswerText"] = correct_text
|
46 |
+
row_new["Answer"] = option
|
47 |
+
row_new["AnswerText"] = row[f"Answer{option}Text"]
|
48 |
+
if not pd.isna(misconception_id):
|
49 |
+
row_new["MisconceptionId"] = int(misconception_id)
|
50 |
+
rows.append(row_new)
|
51 |
+
df_long = pd.DataFrame(rows).reset_index(drop=True)
|
52 |
+
df_long.insert(0, "QuestionId_Answer", df_long["QuestionId"].astype(str) + "_" + df_long["Answer"])
|
53 |
+
return df_long
|
54 |
+
|
55 |
+
def predict(self, test_df):
|
56 |
+
"""ํ
์คํธ ๋ฐ์ดํฐ์ ๋ํ ์์ธก ์ํ"""
|
57 |
+
test_df_long = self.wide_to_long(test_df)
|
58 |
+
|
59 |
+
prompt = (
|
60 |
+
"Subject: {SubjectName}\n"
|
61 |
+
"Construct: {ConstructName}\n"
|
62 |
+
"Question: {QuestionText}\n"
|
63 |
+
"Incorrect Answer: {AnswerText}"
|
64 |
+
)
|
65 |
+
test_df_long["anchor"] = [
|
66 |
+
prompt.format(
|
67 |
+
SubjectName=row["SubjectName"],
|
68 |
+
ConstructName=row["ConstructName"],
|
69 |
+
QuestionText=row["QuestionText"],
|
70 |
+
AnswerText=row["AnswerText"]
|
71 |
+
) for _, row in test_df_long.iterrows()
|
72 |
+
]
|
73 |
+
|
74 |
+
# ํ
์คํธ ๋ฐ์ดํฐ ์๋ฒ ๋ฉ
|
75 |
+
embs_test_query = self.model.encode(test_df_long["anchor"], normalize_embeddings=True)
|
76 |
+
|
77 |
+
# ์ ์ฌ๋ ๊ณ์ฐ ๋ฐ ์์ ์ฐ์ถ
|
78 |
+
rank_test = np.array([
|
79 |
+
np.argsort(np.argsort(-cosine_similarity(embs_test_query, embs_misconception)), axis=1, kind="stable")
|
80 |
+
for embs_misconception in self.misconception_embs
|
81 |
+
])
|
82 |
+
rank_ave_test = np.mean(rank_test ** (1 / 4), axis=0)
|
83 |
+
argsort_test = np.argsort(rank_ave_test, axis=1, kind="stable")
|
84 |
+
|
85 |
+
test_df_long["PredictedMisconceptions"] = [argsort_test[i, :25].tolist() for i in range(len(argsort_test))]
|
86 |
+
return test_df_long
|
87 |
+
|