Spaces:
Sleeping
Sleeping
Update src/SecondModule/module2.py
Browse files- src/SecondModule/module2.py +323 -49
src/SecondModule/module2.py
CHANGED
@@ -5,6 +5,8 @@ from dataclasses import dataclass
|
|
5 |
import logging
|
6 |
from dotenv import load_dotenv
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
# Set up logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
@@ -32,6 +34,169 @@ class GeneratedQuestion:
|
|
32 |
correct_answer: str
|
33 |
explanation: str
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
class SimilarQuestionGenerator:
|
36 |
def __init__(self, misconception_csv_path: str = 'misconception_mapping.csv'):
|
37 |
"""
|
@@ -129,68 +294,177 @@ class SimilarQuestionGenerator:
|
|
129 |
except Exception as e:
|
130 |
logger.error(f"Unexpected error in call_model_api: {e}")
|
131 |
raise
|
|
|
|
|
132 |
def parse_model_output(self, output: str) -> GeneratedQuestion:
|
|
|
|
|
133 |
if not isinstance(output, str):
|
134 |
logger.error(f"Invalid output format: {type(output)}. Expected string.")
|
135 |
-
raise ValueError("Model output is not a string
|
136 |
-
|
137 |
-
logger.info(
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
if line.lower().startswith("question:"):
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
elif line.lower().startswith("correct answer:"):
|
155 |
-
|
|
|
|
|
|
|
|
|
156 |
elif line.lower().startswith("explanation:"):
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
return GeneratedQuestion(question, choices, correct_answer, explanation)
|
162 |
|
163 |
-
def generate_similar_question_with_text(self, construct_name: str, subject_name: str, question_text: str, correct_answer_text: str, wrong_answer_text: str, misconception_id: float) -> Tuple[Optional[GeneratedQuestion], Optional[str]]:
|
164 |
-
logger.info("generate_similar_question_with_text initiated")
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
try:
|
168 |
misconception_text = self.get_misconception_text(misconception_id)
|
169 |
logger.info(f"Misconception text retrieved: {misconception_text}")
|
|
|
|
|
|
|
170 |
except Exception as e:
|
171 |
logger.error(f"Error retrieving misconception text: {e}")
|
172 |
return None, None
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import logging
|
6 |
from dotenv import load_dotenv
|
7 |
import os
|
8 |
+
import time
|
9 |
+
import re
|
10 |
|
11 |
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
|
|
34 |
correct_answer: str
|
35 |
explanation: str
|
36 |
|
37 |
+
# class SimilarQuestionGenerator:
|
38 |
+
# def __init__(self, misconception_csv_path: str = 'misconception_mapping.csv'):
|
39 |
+
# """
|
40 |
+
# Initialize the generator by loading the misconception mapping and the language model.
|
41 |
+
# """
|
42 |
+
# self._load_data(misconception_csv_path)
|
43 |
+
|
44 |
+
# def _load_data(self, misconception_csv_path: str):
|
45 |
+
# logger.info("Loading misconception mapping...")
|
46 |
+
# self.misconception_df = pd.read_csv(misconception_csv_path)
|
47 |
+
|
48 |
+
# def get_misconception_text(self, misconception_id: float) -> Optional[str]:
|
49 |
+
# # MisconceptionId๋ฅผ ๋ฐ์ ํด๋น ID์ ๋งค์นญ๋๋ ์ค๊ฐ๋
์ค๋ช
ํ
์คํธ๋ฅผ ๋ฐํํฉ๋๋ค
|
50 |
+
# """Retrieve the misconception text based on the misconception ID."""
|
51 |
+
# if pd.isna(misconception_id): # NaN ์ฒดํฌ
|
52 |
+
# logger.warning("Received NaN for misconception_id.")
|
53 |
+
# return "No misconception provided."
|
54 |
+
|
55 |
+
# try:
|
56 |
+
# row = self.misconception_df[self.misconception_df['MisconceptionId'] == int(misconception_id)]
|
57 |
+
# if not row.empty:
|
58 |
+
# return row.iloc[0]['MisconceptionName']
|
59 |
+
# except ValueError as e:
|
60 |
+
# logger.error(f"Error processing misconception_id: {e}")
|
61 |
+
|
62 |
+
# logger.warning(f"No misconception found for ID: {misconception_id}")
|
63 |
+
# return "Misconception not found."
|
64 |
+
|
65 |
+
# def generate_prompt(self, construct_name: str, subject_name: str, question_text: str, correct_answer_text: str, wrong_answer_text: str, misconception_text: str) -> str:
|
66 |
+
# """Create a prompt for the language model."""
|
67 |
+
# #๋ฌธ์ ์์ฑ์ ์ํ ํ๋กฌํํธ ํ
์คํธ๋ฅผ ์์ฑ
|
68 |
+
# logger.info("Generating prompt...")
|
69 |
+
# misconception_clause = (f"that targets the following misconception: \"{misconception_text}\"." if misconception_text != "There is no misconception" else "")
|
70 |
+
# prompt = f"""
|
71 |
+
# <|begin_of_text|>
|
72 |
+
# <|start_header_id|>system<|end_header_id|>
|
73 |
+
# You are an educational assistant designed to generate multiple-choice questions {misconception_clause}
|
74 |
+
# <|eot_id|>
|
75 |
+
# <|start_header_id|>user<|end_header_id|>
|
76 |
+
# You need to create a similar multiple-choice question based on the following details:
|
77 |
+
|
78 |
+
# Construct Name: {construct_name}
|
79 |
+
# Subject Name: {subject_name}
|
80 |
+
# Question Text: {question_text}
|
81 |
+
# Correct Answer: {correct_answer_text}
|
82 |
+
# Wrong Answer: {wrong_answer_text}
|
83 |
+
|
84 |
+
# Please follow this output format:
|
85 |
+
# ---
|
86 |
+
# Question: <Your Question Text>
|
87 |
+
# A) <Choice A>
|
88 |
+
# B) <Choice B>
|
89 |
+
# C) <Choice C>
|
90 |
+
# D) <Choice D>
|
91 |
+
# Correct Answer: <Correct Choice (e.g., A)>
|
92 |
+
# Explanation: <Brief explanation for the correct answer>
|
93 |
+
# ---
|
94 |
+
# Ensure that the question is conceptually similar but not identical to the original. Ensure clarity and educational value.
|
95 |
+
# <|eot_id|>
|
96 |
+
# <|start_header_id|>assistant<|end_header_id|>
|
97 |
+
# """.strip()
|
98 |
+
# logger.debug(f"Generated prompt: {prompt}")
|
99 |
+
# return prompt
|
100 |
+
|
101 |
+
# def call_model_api(self, prompt: str) -> str:
|
102 |
+
# """Hugging Face API ํธ์ถ"""
|
103 |
+
# logger.info("Calling Hugging Face API...")
|
104 |
+
# headers = {"Authorization": f"Bearer {API_KEY}"}
|
105 |
+
|
106 |
+
# try:
|
107 |
+
# response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
108 |
+
# response.raise_for_status()
|
109 |
+
|
110 |
+
# response_data = response.json()
|
111 |
+
# logger.debug(f"Raw API response: {response_data}")
|
112 |
+
|
113 |
+
# # API ์๋ต์ด ๋ฆฌ์คํธ์ธ ๊ฒฝ์ฐ ์ฒ๋ฆฌ
|
114 |
+
# if isinstance(response_data, list):
|
115 |
+
# if response_data and isinstance(response_data[0], dict):
|
116 |
+
# generated_text = response_data[0].get('generated_text', '')
|
117 |
+
# else:
|
118 |
+
# generated_text = response_data[0] if response_data else ''
|
119 |
+
# # API ์๋ต์ด ๋์
๋๋ฆฌ์ธ ๊ฒฝ์ฐ ์ฒ๋ฆฌ
|
120 |
+
# elif isinstance(response_data, dict):
|
121 |
+
# generated_text = response_data.get('generated_text', '')
|
122 |
+
# else:
|
123 |
+
# generated_text = str(response_data)
|
124 |
+
|
125 |
+
# logger.info(f"Generated text: {generated_text}")
|
126 |
+
# return generated_text
|
127 |
+
|
128 |
+
# except requests.exceptions.RequestException as e:
|
129 |
+
# logger.error(f"API request failed: {e}")
|
130 |
+
# raise
|
131 |
+
# except Exception as e:
|
132 |
+
# logger.error(f"Unexpected error in call_model_api: {e}")
|
133 |
+
# raise
|
134 |
+
# def parse_model_output(self, output: str) -> GeneratedQuestion:
|
135 |
+
# if not isinstance(output, str):
|
136 |
+
# logger.error(f"Invalid output format: {type(output)}. Expected string.")
|
137 |
+
# raise ValueError("Model output is not a string.")
|
138 |
+
|
139 |
+
# logger.info(f"Parsing output: {output}")
|
140 |
+
# output_lines = output.strip().splitlines()
|
141 |
+
# logger.debug(f"Split output into lines: {output_lines}")
|
142 |
+
|
143 |
+
# question, choices, correct_answer, explanation = "", {}, "", ""
|
144 |
+
|
145 |
+
# for line in output_lines:
|
146 |
+
# if line.lower().startswith("question:"):
|
147 |
+
# question = line.split(":", 1)[1].strip()
|
148 |
+
# elif line.startswith("A)"):
|
149 |
+
# choices["A"] = line[2:].strip()
|
150 |
+
# elif line.startswith("B)"):
|
151 |
+
# choices["B"] = line[2:].strip()
|
152 |
+
# elif line.startswith("C)"):
|
153 |
+
# choices["C"] = line[2:].strip()
|
154 |
+
# elif line.startswith("D)"):
|
155 |
+
# choices["D"] = line[2:].strip()
|
156 |
+
# elif line.lower().startswith("correct answer:"):
|
157 |
+
# correct_answer = line.split(":", 1)[1].strip()
|
158 |
+
# elif line.lower().startswith("explanation:"):
|
159 |
+
# explanation = line.split(":", 1)[1].strip()
|
160 |
+
|
161 |
+
# if not question or len(choices) < 4 or not correct_answer or not explanation:
|
162 |
+
# logger.warning("Incomplete generated question.")
|
163 |
+
# return GeneratedQuestion(question, choices, correct_answer, explanation)
|
164 |
+
|
165 |
+
# def generate_similar_question_with_text(self, construct_name: str, subject_name: str, question_text: str, correct_answer_text: str, wrong_answer_text: str, misconception_id: float) -> Tuple[Optional[GeneratedQuestion], Optional[str]]:
|
166 |
+
# logger.info("generate_similar_question_with_text initiated")
|
167 |
+
|
168 |
+
# # ์์ธ ์ฒ๋ฆฌ ์ถ๊ฐ
|
169 |
+
# try:
|
170 |
+
# misconception_text = self.get_misconception_text(misconception_id)
|
171 |
+
# logger.info(f"Misconception text retrieved: {misconception_text}")
|
172 |
+
# except Exception as e:
|
173 |
+
# logger.error(f"Error retrieving misconception text: {e}")
|
174 |
+
# return None, None
|
175 |
+
|
176 |
+
# if not misconception_text:
|
177 |
+
# logger.info("Skipping question generation due to lack of misconception.")
|
178 |
+
# return None, None
|
179 |
+
|
180 |
+
# prompt = self.generate_prompt(construct_name, subject_name, question_text, correct_answer_text, wrong_answer_text, misconception_text)
|
181 |
+
# logger.info(f"Generated prompt: {prompt}")
|
182 |
+
|
183 |
+
# generated_text = None # ๊ธฐ๋ณธ๊ฐ์ผ๋ก ์ด๊ธฐํ
|
184 |
+
# try:
|
185 |
+
# logger.info("Calling call_model_api...")
|
186 |
+
# generated_text = self.call_model_api(prompt)
|
187 |
+
# logger.info(f"Generated text from API: {generated_text}")
|
188 |
+
|
189 |
+
# # ํ์ฑ
|
190 |
+
# generated_question = self.parse_model_output(generated_text)
|
191 |
+
# logger.info(f"Generated question object: {generated_question}")
|
192 |
+
# return generated_question, generated_text
|
193 |
+
|
194 |
+
# except Exception as e:
|
195 |
+
# logger.error(f"Failed to generate question: {e}")
|
196 |
+
# logger.debug(f"API output for debugging: {generated_text}")
|
197 |
+
# return None, generated_text
|
198 |
+
|
199 |
+
|
200 |
class SimilarQuestionGenerator:
|
201 |
def __init__(self, misconception_csv_path: str = 'misconception_mapping.csv'):
|
202 |
"""
|
|
|
294 |
except Exception as e:
|
295 |
logger.error(f"Unexpected error in call_model_api: {e}")
|
296 |
raise
|
297 |
+
|
298 |
+
# --- module2.py ์ค ์ผ๋ถ ---
|
299 |
def parse_model_output(self, output: str) -> GeneratedQuestion:
|
300 |
+
"""Parse the model output with improved extraction of the question components."""
|
301 |
+
|
302 |
if not isinstance(output, str):
|
303 |
logger.error(f"Invalid output format: {type(output)}. Expected string.")
|
304 |
+
raise ValueError("Model output is not a string")
|
305 |
+
|
306 |
+
logger.info("Parsing model output...")
|
307 |
+
|
308 |
+
# 1) ์ ์ฒด ํ
์คํธ๋ฅผ ์ค ๋จ์๋ก ๋๋
|
309 |
+
lines = output.splitlines()
|
310 |
+
|
311 |
+
# 2) ๋ง์ง๋ง์ผ๋ก ๋ฑ์ฅํ๋ Question~Explanation ๋ธ๋ก์ ์ฐพ๊ธฐ ์ํ ์์ ๋ณ์
|
312 |
+
question = ""
|
313 |
+
choices = {}
|
314 |
+
correct_answer = ""
|
315 |
+
explanation = ""
|
316 |
+
|
317 |
+
# ์ด ๋ธ๋ก์ ์ฌ๋ฌ ๋ฒ ๋ง๋ ์ ์์ผ๋, ์ผ๋จ ๋ฐ๊ฒฌํ ๋๋ง๋ค ์ ์ฅํด๋๊ณ ๋ฎ์ด์์ฐ๋ ๋ฐฉ์.
|
318 |
+
# ์ต์ข
์ ์ผ๋ก "๋ง์ง๋ง์ ๋ฐ๊ฒฌ๋" Question ๋ธ๋ก์ด ์๋ ๋ณ์๋ฅผ ๋ฎ์ด์ฐ๊ฒ ๋จ
|
319 |
+
temp_question = ""
|
320 |
+
temp_choices = {}
|
321 |
+
temp_correct = ""
|
322 |
+
temp_explanation = ""
|
323 |
+
|
324 |
+
for line in lines:
|
325 |
+
line = line.strip()
|
326 |
+
if not line:
|
327 |
+
continue
|
328 |
|
329 |
+
# Question:
|
330 |
if line.lower().startswith("question:"):
|
331 |
+
# ์ง๊ธ๊น์ง ์ ์ฅํด๋ ์ด์ ๋ธ๋ก๋ค์ ์ต์ข
์ ์ฅ ์์ญ์ ๋ฎ์ด์์ด๋ค
|
332 |
+
if temp_question:
|
333 |
+
question = temp_question
|
334 |
+
choices = temp_choices
|
335 |
+
correct_answer = temp_correct
|
336 |
+
explanation = temp_explanation
|
337 |
+
|
338 |
+
# ์ ๋ธ๋ก์ ์์
|
339 |
+
temp_question = line.split(":", 1)[1].strip()
|
340 |
+
temp_choices = {}
|
341 |
+
temp_correct = ""
|
342 |
+
temp_explanation = ""
|
343 |
+
|
344 |
+
# A) / B) / C) / D)
|
345 |
+
elif re.match(r"^[ABCD]\)", line):
|
346 |
+
# "A) ์ ํ์ง ๋ด์ฉ"
|
347 |
+
letter = line[0] # A, B, C, D
|
348 |
+
choice_text = line[2:].strip()
|
349 |
+
temp_choices[letter] = choice_text
|
350 |
+
|
351 |
+
# Correct Answer:
|
352 |
elif line.lower().startswith("correct answer:"):
|
353 |
+
# "Correct Answer: A)" ํํ์์ A๋ง ์ถ์ถ
|
354 |
+
ans_part = line.split(":", 1)[1].strip()
|
355 |
+
temp_correct = ans_part[0].upper() if ans_part else ""
|
356 |
+
|
357 |
+
# Explanation:
|
358 |
elif line.lower().startswith("explanation:"):
|
359 |
+
temp_explanation = line.split(":", 1)[1].strip()
|
360 |
+
|
361 |
+
# ๋ฃจํ๊ฐ ๋๋ ๋ค, ํ ๋ฒ ๋ ์ต์ ๋ธ๋ก์ ์ต์ข
๋ณ์์ ๋ฐ์
|
362 |
+
if temp_question:
|
363 |
+
question = temp_question
|
364 |
+
choices = temp_choices
|
365 |
+
correct_answer = temp_correct
|
366 |
+
explanation = temp_explanation
|
367 |
+
|
368 |
+
# ์ด์ question, choices, correct_answer, explanation์ด ์ต์ข
ํ์ฑ ๊ฒฐ๊ณผ
|
369 |
+
logger.debug(f"Parsed components - Question: {question}, Choices: {choices}, "
|
370 |
+
f"Correct Answer: {correct_answer}, Explanation: {explanation}")
|
371 |
+
|
372 |
return GeneratedQuestion(question, choices, correct_answer, explanation)
|
373 |
|
|
|
|
|
374 |
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
def validate_generated_question(self, question: GeneratedQuestion) -> bool:
|
379 |
+
"""Validate if all components of the generated question are present and valid."""
|
380 |
+
logger.info("Validating generated question...")
|
381 |
+
|
382 |
+
try:
|
383 |
+
# Check if question text exists and is not too short
|
384 |
+
if not question.question or len(question.question.strip()) < 10:
|
385 |
+
logger.warning("Question text is missing or too short")
|
386 |
+
return False
|
387 |
+
|
388 |
+
# Check if all four choices exist and are not empty
|
389 |
+
required_choices = set(['A', 'B', 'C', 'D'])
|
390 |
+
if set(question.choices.keys()) != required_choices:
|
391 |
+
logger.warning(f"Missing choices. Found: {set(question.choices.keys())}")
|
392 |
+
return False
|
393 |
+
|
394 |
+
if not all(choice.strip() for choice in question.choices.values()):
|
395 |
+
logger.warning("Empty choice text found")
|
396 |
+
return False
|
397 |
+
|
398 |
+
# Check if correct answer is valid (should be just A, B, C, or D)
|
399 |
+
if not question.correct_answer or question.correct_answer not in required_choices:
|
400 |
+
logger.warning(f"Invalid correct answer: {question.correct_answer}")
|
401 |
+
return False
|
402 |
+
|
403 |
+
# Check if explanation exists and is not too short
|
404 |
+
if not question.explanation or len(question.explanation.strip()) < 20:
|
405 |
+
logger.warning("Explanation is missing or too short")
|
406 |
+
return False
|
407 |
+
|
408 |
+
logger.info("Question validation passed")
|
409 |
+
return True
|
410 |
+
|
411 |
+
except Exception as e:
|
412 |
+
logger.error(f"Error during validation: {e}")
|
413 |
+
return False
|
414 |
+
|
415 |
+
def generate_similar_question_with_text(self, construct_name: str, subject_name: str,
|
416 |
+
question_text: str, correct_answer_text: str,
|
417 |
+
wrong_answer_text: str, misconception_id: float,
|
418 |
+
max_retries: int = 3) -> Tuple[Optional[GeneratedQuestion], Optional[str]]:
|
419 |
+
"""Generate a similar question with validation and retry mechanism."""
|
420 |
+
logger.info("generate_similar_question_with_text initiated")
|
421 |
+
|
422 |
+
# Get misconception text
|
423 |
try:
|
424 |
misconception_text = self.get_misconception_text(misconception_id)
|
425 |
logger.info(f"Misconception text retrieved: {misconception_text}")
|
426 |
+
if not misconception_text:
|
427 |
+
logger.info("Skipping question generation due to lack of misconception.")
|
428 |
+
return None, None
|
429 |
except Exception as e:
|
430 |
logger.error(f"Error retrieving misconception text: {e}")
|
431 |
return None, None
|
432 |
+
|
433 |
+
# Generate prompt once since it doesn't change between retries
|
434 |
+
prompt = self.generate_prompt(construct_name, subject_name, question_text,
|
435 |
+
correct_answer_text, wrong_answer_text, misconception_text)
|
436 |
+
|
437 |
+
# Attempt generation with retries
|
438 |
+
for attempt in range(max_retries):
|
439 |
+
try:
|
440 |
+
logger.info(f"Attempt {attempt + 1} of {max_retries}")
|
441 |
+
|
442 |
+
# Call API
|
443 |
+
generated_text = self.call_model_api(prompt)
|
444 |
+
logger.info(f"Generated text from API: {generated_text}")
|
445 |
+
|
446 |
+
# Parse output
|
447 |
+
generated_question = self.parse_model_output(generated_text)
|
448 |
+
|
449 |
+
# Validate the generated question
|
450 |
+
if self.validate_generated_question(generated_question):
|
451 |
+
logger.info("Successfully generated valid question")
|
452 |
+
return generated_question, generated_text
|
453 |
+
else:
|
454 |
+
logger.warning(f"Generated question failed validation on attempt {attempt + 1}")
|
455 |
+
|
456 |
+
# If this was the last attempt, return None
|
457 |
+
if attempt == max_retries - 1:
|
458 |
+
logger.error("Max retries reached without generating valid question")
|
459 |
+
return None, generated_text
|
460 |
+
|
461 |
+
# Add delay between retries to avoid rate limiting
|
462 |
+
time.sleep(2) # 2 second delay between retries
|
463 |
+
|
464 |
+
except Exception as e:
|
465 |
+
logger.error(f"Error during question generation attempt {attempt + 1}: {e}")
|
466 |
+
if attempt == max_retries - 1:
|
467 |
+
return None, None
|
468 |
+
time.sleep(2) # Add delay before retry
|
469 |
+
|
470 |
+
return None, None
|