Spaces:
Sleeping
Sleeping
File size: 6,473 Bytes
a0a2f13 4be3af4 a0a2f13 b2b9de7 4be3af4 a0a2f13 b2b9de7 4be3af4 b2b9de7 4be3af4 b2b9de7 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 b2b9de7 4be3af4 a0a2f13 b2b9de7 a0a2f13 4be3af4 b2b9de7 a0a2f13 b2b9de7 a0a2f13 b2b9de7 a0a2f13 b2b9de7 4be3af4 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 4be3af4 a0a2f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# # module3.py
import re
import requests
from typing import Optional, Tuple
import logging
from dotenv import load_dotenv
import os
from collections import Counter
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load .env file
load_dotenv()
# Hugging Face API information
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
if not API_KEY:
raise ValueError("API_KEYκ° μ€μ λμ§ μμμ΅λλ€. .env νμΌμ νμΈνμΈμ.")
class AnswerVerifier:
def verify_answer(self, question: str, choices: dict, num_checks: int = 5) -> Tuple[Optional[str], str]:
"""
Self-consistency approachλ₯Ό νμ©ν λ΅λ³ κ²μ¦
num_checks: λμΌ μ§λ¬Έμ λν΄ λ°λ³΅ κ²μ¦ν νμ
λ°νκ°: (κ²μ¦λ λ΅μ, μ€λͺ
) νν
"""
try:
answers = []
for i, _ in enumerate(range(num_checks)):
prompt = self._create_prompt(question, choices)
headers = {"Authorization": f"Bearer {API_KEY}"}
response = requests.post(
API_URL,
headers=headers,
json={"inputs": prompt}
)
response.raise_for_status()
response_data = response.json()
logger.debug(f"Raw API response: {response_data}")
# API μλ΅ μ²λ¦¬
generated_text = self._process_response(response_data)
logger.debug(f"Trial {i+1}:")
logger.debug(f"Generated text: {generated_text}")
answer = self._extract_answer(generated_text)
logger.debug(f"Extracted answer: {answer}")
if answer:
answers.append(answer)
if not answers:
return None, "No valid answers extracted"
# # λ€μκ²° ν¬νλ‘ μ΅μ’
λ΅μ κ²°μ
# final_answer, explanation = self._get_majority_vote(answers)
# logger.info(f"Final verified answer: {final_answer} ({explanation})")
# return final_answer, explanation
# Return only the final answer instead of a tuple
final_answer, explanation = self._get_majority_vote(answers)
logger.info(f"Final verified answer: {final_answer} ({explanation})")
return final_answer # κΈ°μ‘΄: return final_answer, explanation
except Exception as e:
logger.error(f"Error in verify_answer: {e}")
return None, f"Error occurred: {str(e)}"
def _create_prompt(self, question: str, choices: dict) -> str:
"""κ°μ λ ν둬ννΈ - λ λͺ
νν μλ΅ νμ μꡬ"""
return f"""
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an expert mathematics teacher evaluating multiple-choice answers.
Analyze the question and options carefully to select the correct answer.
IMPORTANT: You must respond ONLY with "Answer: X" where X is A, B, C, or D.
Do not include any explanation or additional text.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Question: {question}
Options:
A) {choices['A']}
B) {choices['B']}
C) {choices['C']}
D) {choices['D']}
Provide your answer in the format: "Answer: X" (where X is A, B, C, or D)
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
""".strip()
def _process_response(self, response_data) -> str:
"""API μλ΅ λ°μ΄ν° μ²λ¦¬ - κ°μ λ λ²μ """
generated_text = ""
if isinstance(response_data, list):
if response_data and isinstance(response_data[0], dict):
generated_text = response_data[0].get('generated_text', '')
else:
generated_text = response_data[0] if response_data else ''
elif isinstance(response_data, dict):
generated_text = response_data.get('generated_text', '')
else:
generated_text = str(response_data)
# assistant μλ΅ λΆλΆλ§ μΆμΆ
parts = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')
if len(parts) > 1:
return parts[-1].strip()
return generated_text.strip()
def _extract_answer(self, response: str) -> Optional[str]:
"""κ°μ λ λ΅μ μΆμΆ λ‘μ§"""
response = response.strip().upper()
# 1. "ANSWER: X" νμ μ°ΎκΈ°
answer_pattern = r'(?:ANSWER:|CORRECT ANSWER:)\s*([ABCD])'
answer_match = re.search(answer_pattern, response)
if answer_match:
return answer_match.group(1)
# 2. λ¨λ
μΌλ‘ μλ A, B, C, D μ°ΎκΈ°
standalone_pattern = r'\b([ABCD])\b'
matches = re.findall(standalone_pattern, response)
# λ§μ§λ§μ μλ λ΅μ λ°ν (μΌλ°μ μΌλ‘ μ΅μ’
λ΅μμ΄ λ§μ§λ§μ μμΉ)
if matches:
return matches[-1]
return None
def _get_majority_vote(self, answers: list) -> Tuple[str, str]:
"""κ°μ λ λ€μκ²° ν¬ν μμ€ν
"""
if not answers:
return None, "No valid answers extracted"
counter = Counter(answers)
# λμ μΈ κ²½μ° μ²λ¦¬
max_count = max(counter.values())
top_answers = [ans for ans, count in counter.items() if count == max_count]
if len(top_answers) > 1:
return None, f"Tie between answers: {top_answers}"
final_answer = counter.most_common(1)[0][0]
total_votes = len(answers)
confidence = (counter[final_answer] / total_votes) * 100
# μ λ’°λ μκ³κ° μ€μ
if confidence < 60:
return None, f"Low confidence ({confidence:.1f}%) for answer {final_answer}"
explanation = (f"Answer '{final_answer}' selected with {confidence:.1f}% confidence "
f"({counter[final_answer]}/{total_votes} votes). "
f"Distribution: {dict(counter)}")
return final_answer, explanation |