Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,903 Bytes
a6cec16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from typing import Optional, Union, Tuple, Dict
from PIL import Image
from . import merge
from .utils import isinstance_str, init_generator
def save_images(images,dest, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
pil_img = Image.fromarray(images[-1])
pil_img.save(dest)
# display(pil_img)
def save_image(images,dest, num_rows=1, offset_ratio=0.02):
print(images.shape)
pil_img = Image.fromarray(images[0])
pil_img.save(dest)
def register_attention_control(model, controller, tome, ratio, sx, sy, de_bug):
class AttnProcessor():
def __init__(self,place_in_unet,de_bug):
self.place_in_unet = place_in_unet
self.de_bug = de_bug
def __call__(self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale=1.0,):
# The `Attention` class can call different attention processors / attention functions
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
h = attn.heads
is_cross = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
q = attn.to_q(hidden_states)
k = attn.to_k(encoder_hidden_states)
v = attn.to_v(encoder_hidden_states)
q = attn.head_to_batch_dim(q)
k = attn.head_to_batch_dim(k)
v = attn.head_to_batch_dim(v)
# print('unmerge:', q.shape)
#pass
attention_probs = attn.get_attention_scores(q, k, attention_mask) # bh,n,n
#
if is_cross:
pass
#attention_probs = controller(attention_probs , is_cross, self.place_in_unet)
x = hidden_states
hidden_states = torch.bmm(attention_probs, v)
if not is_cross:
if tome:
r = int(x.shape[1] * ratio)
H = W = int(np.sqrt(x.shape[1]))
generator = init_generator(x.device)
m, u = merge.bipartite_soft_matching_random2d(x, W, H, sx, sy, r,
no_rand=False, generator=generator)
x = m(x)
m_k = attn.to_k(x)
m_v = attn.to_v(x)
m_k = attn.head_to_batch_dim(m_k)
m_v = attn.head_to_batch_dim(m_v)
# print('merged:', m_q.shape)
# m_k = k
# m_v = v
#m_k, m_v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (m_k, m_v))
else:
m_k = k
m_v = v
# if self.de_bug:
# import pdb;pdb.set_trace()
h_s_re = controller(q, m_k, m_v, attn.heads, attention_probs, attn)
if h_s_re != None and hidden_states.shape[0]//attn.heads == 3:
hidden_states[2*attn.heads:]=h_s_re
if hidden_states.shape[0]//attn.heads != 3 and h_s_re != None:
(u_h_s_re, c_h_s_re) = h_s_re
if u_h_s_re != None:
hidden_states[2*attn.heads:3*attn.heads] = u_h_s_re
hidden_states[5*attn.heads:] = c_h_s_re
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def register_recr(net_, count, place_in_unet):
for idx, m in enumerate(net_.modules()):
# print(m.__class__.__name__)
if m.__class__.__name__ == "Attention":
count+=1
m.processor = AttnProcessor( place_in_unet, de_bug)
return count
cross_att_count = 0
sub_nets = model.unet.named_children()
for net in sub_nets:
if "down" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "up" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "mid" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
#print(f'this model have {cross_att_count} attn layer')
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None):
if type(bounds) is float:
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[: start, prompt_ind, word_inds] = 0
alpha[start: end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
tokenizer, max_num_words=77):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0., 1.)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words
return alpha_time_words
|