import torch import numpy as np import scipy.linalg # FID评价保真度,越小越好 def calculate_fid( featuresdict_1, featuresdict_2, feat_layer_name ): # using 2048 layer to calculate eps = 1e-6 features_1 = featuresdict_1[feat_layer_name] features_2 = featuresdict_2[feat_layer_name] assert torch.is_tensor(features_1) and features_1.dim() == 2 assert torch.is_tensor(features_2) and features_2.dim() == 2 stat_1 = { "mu": np.mean(features_1.numpy(), axis=0), "sigma": np.cov(features_1.numpy(), rowvar=False), } stat_2 = { "mu": np.mean(features_2.numpy(), axis=0), "sigma": np.cov(features_2.numpy(), rowvar=False), } # print("Computing Frechet Distance (PANNs)") mu1, sigma1 = stat_1["mu"], stat_1["sigma"] mu2, sigma2 = stat_2["mu"], stat_2["sigma"] assert mu1.shape == mu2.shape and mu1.dtype == mu2.dtype assert sigma1.shape == sigma2.shape and sigma1.dtype == sigma2.dtype mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert ( mu1.shape == mu2.shape ), "Training and test mean vectors have different lengths" assert ( sigma1.shape == sigma2.shape ), "Training and test covariances have different dimensions" diff = mu1 - mu2 # Product might be almost singular covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): print( f"WARNING: fid calculation produces singular product; adding {eps} to diagonal of cov" ) offset = np.eye(sigma1.shape[0]) * eps covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) assert False, "Imaginary component {}".format(m) covmean = covmean.real tr_covmean = np.trace(covmean) fid = diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean return { "frechet_distance": float(fid), }