AudioMorphix / src /module /unet /unet_2d_condition.py
JinhuaL1ANG's picture
v1
9a6dac6
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
import os, json
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin, _get_model_file
from diffusers.utils import BaseOutput, logging
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.models.activations import get_activation
from diffusers.models.embeddings import (
TimestepEmbedding,
Timesteps,
GaussianFourierProjection,
)
from .unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
UNetMidBlock2DCrossAttn,
UpBlock2D,
get_down_block,
get_up_block,
)
from .resnet_2d import InflatedConv3d
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNet2DConditionOutput(BaseOutput):
"""
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.FloatTensor
class CustomUNet2DConditionModel(UNet2DConditionModel):
r"""
A custom conditional 2D UNet that takes external features as key and values in the attention layer and return
an output with the same size of input latent.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
Height and width of input/output sample.
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use.
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
The tuple of upsample blocks to use.
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
Whether to include self-attention in the basic transformer blocks, see
[`~models.attention.BasicTransformerBlock`].
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
If `None`, normalization and activation layers is skipped in post-processing.
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
encoder_hid_dim (`int`, *optional*, defaults to None):
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
dimension to `cross_attention_dim`.
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
num_attention_heads (`int`, *optional*):
The number of attention heads. If not defined, defaults to `attention_head_dim`
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
class_embed_type (`str`, *optional*, defaults to `None`):
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
addition_embed_type (`str`, *optional*, defaults to `None`):
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
"text". "text" will use the `TextTimeEmbedding` layer.
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
Dimension for the timestep embeddings.
num_class_embeds (`int`, *optional*, defaults to `None`):
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
class conditioning with `class_embed_type` equal to `None`.
time_embedding_type (`str`, *optional*, defaults to `positional`):
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
time_embedding_dim (`int`, *optional*, defaults to `None`):
An optional override for the dimension of the projected time embedding.
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
Optional activation function to use only once on the time embeddings before they are passed to the rest of
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
timestep_post_act (`str`, *optional*, defaults to `None`):
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
The dimension of `cond_proj` layer in the timestep embedding.
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
embeddings with the class embeddings.
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
otherwise.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 4,
out_channels: int = 4,
center_input_sample: bool = False,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
up_block_types: Tuple[str] = (
"UpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: Union[int, Tuple[int]] = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
# dropout: float = 0.0,
act_fn: str = "silu",
norm_num_groups: Optional[int] = 32,
norm_eps: float = 1e-5,
cross_attention_dim: Union[int, Tuple[int]] = 1280,
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
encoder_hid_dim: Optional[int] = None,
encoder_hid_dim_type: Optional[str] = None,
attention_head_dim: Union[int, Tuple[int]] = 8,
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
addition_embed_type: Optional[str] = None,
addition_time_embed_dim: Optional[int] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
resnet_skip_time_act: bool = False,
resnet_out_scale_factor: float = 1.0,
time_embedding_type: str = "positional",
time_embedding_dim: Optional[int] = None,
time_embedding_act_fn: Optional[str] = None,
timestep_post_act: Optional[str] = None,
time_cond_proj_dim: Optional[int] = None,
conv_in_kernel: int = 3,
conv_out_kernel: int = 3,
projection_class_embeddings_input_dim: Optional[int] = None,
attention_type: str = "default",
class_embeddings_concat: bool = False,
mid_block_only_cross_attention: Optional[bool] = None,
cross_attention_norm: Optional[str] = None,
addition_embed_type_num_heads: int = 64,
# adapt old version
use_sc_attn: bool = False,
use_st_attn: bool = False,
st_attn_idx: int = None,
):
super().__init__(
sample_size=sample_size,
in_channels=in_channels,
out_channels=out_channels,
center_input_sample=center_input_sample,
flip_sin_to_cos=flip_sin_to_cos,
freq_shift=freq_shift,
down_block_types=down_block_types,
mid_block_type=mid_block_type,
up_block_types=up_block_types,
only_cross_attention=only_cross_attention,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
downsample_padding=downsample_padding,
mid_block_scale_factor=mid_block_scale_factor,
# dropout=dropout,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_eps=norm_eps,
cross_attention_dim=cross_attention_dim,
transformer_layers_per_block=transformer_layers_per_block,
# reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
encoder_hid_dim=encoder_hid_dim,
encoder_hid_dim_type=encoder_hid_dim_type,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
class_embed_type=class_embed_type,
addition_embed_type=addition_embed_type,
addition_time_embed_dim=addition_time_embed_dim,
num_class_embeds=num_class_embeds,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
resnet_skip_time_act=resnet_skip_time_act,
resnet_out_scale_factor=resnet_out_scale_factor,
time_embedding_type=time_embedding_type,
time_embedding_dim=time_embedding_dim,
time_embedding_act_fn=time_embedding_act_fn,
timestep_post_act=timestep_post_act,
time_cond_proj_dim=time_cond_proj_dim,
conv_in_kernel=conv_in_kernel,
conv_out_kernel=conv_out_kernel,
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
# attention_type=attention_type,
class_embeddings_concat=class_embeddings_concat,
mid_block_only_cross_attention=mid_block_only_cross_attention,
cross_attention_norm=cross_attention_norm,
addition_embed_type_num_heads=addition_embed_type_num_heads,
)
self.in_channels = in_channels
self.sample_size = sample_size
# input
self.conv_in = InflatedConv3d(
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
)
# time
time_embed_dim, timestep_input_dim = self._set_time_proj(
time_embedding_type,
block_out_channels=block_out_channels,
flip_sin_to_cos=flip_sin_to_cos,
freq_shift=freq_shift,
time_embedding_dim=time_embedding_dim,
)
self.time_embedding = TimestepEmbedding(
timestep_input_dim,
time_embed_dim,
act_fn=act_fn,
post_act_fn=timestep_post_act,
cond_proj_dim=time_cond_proj_dim,
)
self._set_encoder_hid_proj(
encoder_hid_dim_type,
cross_attention_dim=cross_attention_dim,
encoder_hid_dim=encoder_hid_dim,
)
# class embedding
self._set_class_embedding(
class_embed_type,
act_fn=act_fn,
num_class_embeds=num_class_embeds,
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
time_embed_dim=time_embed_dim,
timestep_input_dim=timestep_input_dim,
)
self._set_add_embedding(
addition_embed_type,
addition_embed_type_num_heads=addition_embed_type_num_heads,
addition_time_embed_dim=addition_time_embed_dim,
cross_attention_dim=cross_attention_dim,
encoder_hid_dim=encoder_hid_dim,
flip_sin_to_cos=flip_sin_to_cos,
freq_shift=freq_shift,
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
time_embed_dim=time_embed_dim,
)
if time_embedding_act_fn is None:
self.time_embed_act = None
else:
self.time_embed_act = get_activation(time_embedding_act_fn)
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
if isinstance(cross_attention_dim, int):
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
if class_embeddings_concat:
# The time embeddings are concatenated with the class embeddings. The dimension of the
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
# regular time embeddings
blocks_time_embed_dim = time_embed_dim * 2
else:
blocks_time_embed_dim = time_embed_dim
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=blocks_time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim[i],
attn_num_head_channels=attention_head_dim[i],
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_sc_attn=use_sc_attn,
# idx range from 0 to 2, i.e., ['CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D']
use_st_attn=True if (use_st_attn and i == st_attn_idx) else False,
layer_id=i,
)
down_block.resolution_idx = i
self.down_blocks.append(down_block)
# mid
if mid_block_type == "UNetMidBlock2DCrossAttn":
self.mid_block = UNetMidBlock2DCrossAttn(
in_channels=block_out_channels[-1],
temb_channels=blocks_time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim[-1],
attn_num_head_channels=attention_head_dim[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
use_sc_attn=use_sc_attn,
use_st_attn=use_st_attn,
)
else:
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
# count how many layers upsample the videos
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_attention_head_dim = list(reversed(attention_head_dim))
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[
min(i + 1, len(block_out_channels) - 1)
]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=blocks_time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=reversed_cross_attention_dim[i],
attn_num_head_channels=reversed_attention_head_dim[i],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_sc_attn=use_sc_attn,
# idx range from 0 to 2, i.e., ['UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D']
use_st_attn=True if (use_st_attn and i - 1 == st_attn_idx) else False,
layer_id=i,
)
up_block.resolution_idx = i
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
)
self.conv_act = nn.SiLU()
self.conv_out = InflatedConv3d(
block_out_channels[0], out_channels, kernel_size=3, padding=1
)
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_slicable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_slicable_dims(module)
num_slicable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_slicable_layers * [1]
slice_size = (
num_slicable_layers * [slice_size]
if not isinstance(slice_size, list)
else slice_size
)
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(
module: torch.nn.Module, slice_size: List[int]
):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(
module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)
):
module.gradient_checkpointing = value
def _set_time_proj(
self,
time_embedding_type: str,
block_out_channels: int,
flip_sin_to_cos: bool,
freq_shift: float,
time_embedding_dim: int,
) -> Tuple[int, int]:
if time_embedding_type == "fourier":
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
if time_embed_dim % 2 != 0:
raise ValueError(
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
)
self.time_proj = GaussianFourierProjection(
time_embed_dim // 2,
set_W_to_weight=False,
log=False,
flip_sin_to_cos=flip_sin_to_cos,
)
timestep_input_dim = time_embed_dim
elif time_embedding_type == "positional":
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
self.time_proj = Timesteps(
block_out_channels[0], flip_sin_to_cos, freq_shift
)
timestep_input_dim = block_out_channels[0]
else:
raise ValueError(
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
)
return time_embed_dim, timestep_input_dim
def _set_encoder_hid_proj(
self,
encoder_hid_dim_type: Optional[str],
cross_attention_dim: Union[int, Tuple[int]],
encoder_hid_dim: Optional[int],
):
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
encoder_hid_dim_type = "text_proj"
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
logger.info(
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
)
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
raise ValueError(
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
)
if encoder_hid_dim_type == "text_proj":
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
elif encoder_hid_dim_type == "text_image_proj":
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
self.encoder_hid_proj = TextImageProjection(
text_embed_dim=encoder_hid_dim,
image_embed_dim=cross_attention_dim,
cross_attention_dim=cross_attention_dim,
)
elif encoder_hid_dim_type == "image_proj":
# Kandinsky 2.2
self.encoder_hid_proj = ImageProjection(
image_embed_dim=encoder_hid_dim,
cross_attention_dim=cross_attention_dim,
)
elif encoder_hid_dim_type is not None:
raise ValueError(
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
)
else:
self.encoder_hid_proj = None
def _set_class_embedding(
self,
class_embed_type: Optional[str],
act_fn: str,
num_class_embeds: Optional[int],
projection_class_embeddings_input_dim: Optional[int],
time_embed_dim: int,
timestep_input_dim: int,
):
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(
timestep_input_dim, time_embed_dim, act_fn=act_fn
)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
elif class_embed_type == "projection":
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
)
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
# 2. it projects from an arbitrary input dimension.
#
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
self.class_embedding = TimestepEmbedding(
projection_class_embeddings_input_dim, time_embed_dim
)
elif class_embed_type == "simple_projection":
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
)
self.class_embedding = nn.Linear(
projection_class_embeddings_input_dim, time_embed_dim
)
else:
self.class_embedding = None
def _set_add_embedding(
self,
addition_embed_type: str,
addition_embed_type_num_heads: int,
addition_time_embed_dim: Optional[int],
flip_sin_to_cos: bool,
freq_shift: float,
cross_attention_dim: Optional[int],
encoder_hid_dim: Optional[int],
projection_class_embeddings_input_dim: Optional[int],
time_embed_dim: int,
):
if addition_embed_type == "text":
if encoder_hid_dim is not None:
text_time_embedding_from_dim = encoder_hid_dim
else:
text_time_embedding_from_dim = cross_attention_dim
self.add_embedding = TextTimeEmbedding(
text_time_embedding_from_dim,
time_embed_dim,
num_heads=addition_embed_type_num_heads,
)
elif addition_embed_type == "text_image":
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
self.add_embedding = TextImageTimeEmbedding(
text_embed_dim=cross_attention_dim,
image_embed_dim=cross_attention_dim,
time_embed_dim=time_embed_dim,
)
elif addition_embed_type == "text_time":
self.add_time_proj = Timesteps(
addition_time_embed_dim, flip_sin_to_cos, freq_shift
)
self.add_embedding = TimestepEmbedding(
projection_class_embeddings_input_dim, time_embed_dim
)
elif addition_embed_type == "image":
# Kandinsky 2.2
self.add_embedding = ImageTimeEmbedding(
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
)
elif addition_embed_type == "image_hint":
# Kandinsky 2.2 ControlNet
self.add_embedding = ImageHintTimeEmbedding(
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
)
elif addition_embed_type is not None:
raise ValueError(
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
iter_cur=0,
save_kv=True,
mode="drag",
mask=None,
) -> Union[UNet2DConditionOutput, Tuple]:
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError(
"class_labels should be provided when num_class_embeds > 0"
)
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
if self.config.class_embeddings_concat:
emb = torch.cat([emb, class_emb], dim=-1)
else:
emb = emb + class_emb
# # pre-process
sample = self.conv_in(sample) # sample shape: 4,4,8,64,64
# down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if (
hasattr(downsample_block, "has_cross_attention")
and downsample_block.has_cross_attention
):
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
iter_cur=iter_cur,
save_kv=save_kv,
mode=mode,
mask=mask,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# mid
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
iter_cur=iter_cur,
save_kv=save_kv,
mode=mode,
mask=mask,
)
# up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[
: -len(upsample_block.resnets)
]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if (
hasattr(upsample_block, "has_cross_attention")
and upsample_block.has_cross_attention
):
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
iter_cur=iter_cur,
save_kv=save_kv,
mode=mode,
mask=mask,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return UNet2DConditionOutput(sample=sample)
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs
):
r"""
for gradio demo
"""
import diffusers
__version__ = diffusers.__version__
from diffusers.utils import (
CONFIG_NAME,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
is_accelerate_available,
is_safetensors_available,
is_torch_version,
logging,
)
if is_torch_version(">=", "1.9.0"):
_LOW_CPU_MEM_USAGE_DEFAULT = True
else:
_LOW_CPU_MEM_USAGE_DEFAULT = False
if is_accelerate_available():
import accelerate
from accelerate.utils import set_module_tensor_to_device
from accelerate.utils.versions import is_torch_version
if is_safetensors_available():
import safetensors
from diffusers.models.modeling_utils import load_state_dict
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
subfolder = kwargs.pop("subfolder", None)
device_map = kwargs.pop("device_map", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
# custom arg
use_sc_attn = kwargs.pop("use_sc_attn", True)
use_st_attn = kwargs.pop("use_st_attn", False)
st_attn_idx = kwargs.pop("st_attn_idx", 0)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if device_map is not None and not is_accelerate_available():
raise NotImplementedError(
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
" `device_map=None`. You can install accelerate with `pip install accelerate`."
)
# Check if we can handle device_map and dispatching the weights
if device_map is not None and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `device_map=None`."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
if low_cpu_mem_usage is False and device_map is not None:
raise ValueError(
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
)
user_agent = {
"diffusers": __version__,
"file_type": "model",
"framework": "pytorch",
}
# Load config if we don't provide a configuration
config_path = pretrained_model_name_or_path
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
# Load model
model_file = None
if is_safetensors_available():
try:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=SAFETENSORS_WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
except:
pass
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if low_cpu_mem_usage:
# Instantiate model with empty weights
with accelerate.init_empty_weights():
config, unused_kwargs = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
device_map=device_map,
**kwargs,
)
# custom arg
config["use_sc_attn"] = use_sc_attn
config["use_st_attn"] = use_st_attn
config["st_attn_idx"] = st_attn_idx
model = cls.from_config(config, **unused_kwargs)
# if device_map is None, load the state dict on move the params from meta device to the cpu
if device_map is None:
param_device = "cpu"
state_dict = load_state_dict(model_file)
# move the parms from meta device to cpu
for param_name, param in state_dict.items():
# import ipdb; ipdb.set_trace()
set_module_tensor_to_device(
model, param_name, param_device, value=param
)
else: # else let accelerate handle loading and dispatching.
# Load weights and dispatch according to the device_map
# by deafult the device_map is None and the weights are loaded on the CPU
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map)
loading_info = {
"missing_keys": [],
"unexpected_keys": [],
"mismatched_keys": [],
"error_msgs": [],
}
else:
config, unused_kwargs = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
subfolder=subfolder,
device_map=device_map,
**kwargs,
)
# custom arg
config["use_sc_attn"] = use_sc_attn
config["use_st_attn"] = use_st_attn
config["st_attn_idx"] = st_attn_idx
model = cls.from_config(config, **unused_kwargs)
state_dict = load_state_dict(model_file)
dtype = set(v.dtype for v in state_dict.values())
if len(dtype) > 1 and torch.float32 not in dtype:
raise ValueError(
f"The weights of the model file {model_file} have a mixture of incompatible dtypes {dtype}. Please"
f" make sure that {model_file} weights have only one dtype."
)
elif len(dtype) > 1 and torch.float32 in dtype:
dtype = torch.float32
else:
dtype = dtype.pop()
# move model to correct dtype
model = model.to(dtype)
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = (
cls._load_pretrained_model(
model,
state_dict,
model_file,
pretrained_model_name_or_path,
ignore_mismatched_sizes=ignore_mismatched_sizes,
)
)
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
"error_msgs": error_msgs,
}
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
raise ValueError(
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
)
elif torch_dtype is not None:
model = model.to(torch_dtype)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
if output_loading_info:
return model, loading_info
return model