Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import torch | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
from models import AudioDiffusion, DDPMScheduler, DDIMScheduler | |
from audioldm.audio.stft import TacotronSTFT | |
from audioldm.variational_autoencoder import AutoencoderKL | |
class Tango: | |
def __init__(self, name="declare-lab/tango", device="cuda:0"): | |
path = snapshot_download(repo_id=name) | |
vae_config = json.load(open("{}/vae_config.json".format(path))) | |
stft_config = json.load(open("{}/stft_config.json".format(path))) | |
main_config = json.load(open("{}/main_config.json".format(path))) | |
self.vae = AutoencoderKL(**vae_config).to(device) | |
self.stft = TacotronSTFT(**stft_config).to(device) | |
self.model = AudioDiffusion(**main_config).to(device) | |
vae_weights = torch.load( | |
"{}/pytorch_model_vae.bin".format(path), map_location=device | |
) | |
stft_weights = torch.load( | |
"{}/pytorch_model_stft.bin".format(path), map_location=device | |
) | |
main_weights = torch.load( | |
"{}/pytorch_model_main.bin".format(path), map_location=device | |
) | |
self.vae.load_state_dict(vae_weights) | |
self.stft.load_state_dict(stft_weights) | |
self.model.load_state_dict(main_weights) | |
print("Successfully loaded checkpoint from:", name) | |
self.vae.eval() | |
self.stft.eval() | |
self.model.eval() | |
# self.scheduler = DDPMScheduler.from_pretrained( | |
# main_config["scheduler_name"], subfolder="scheduler" | |
# ) | |
self.scheduler = DDIMScheduler.from_pretrained( | |
main_config["scheduler_name"], subfolder="scheduler" | |
) | |
def chunks(self, lst, n): | |
"""Yield successive n-sized chunks from a list.""" | |
for i in range(0, len(lst), n): | |
yield lst[i : i + n] | |
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): | |
"""Genrate audio for a single prompt string.""" | |
with torch.no_grad(): | |
latents = self.model.inference( | |
[prompt], | |
self.scheduler, | |
steps, | |
guidance, | |
samples, | |
disable_progress=disable_progress, | |
) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
return wave[0] | |
def generate_for_batch( | |
self, | |
prompts, | |
steps=100, | |
guidance=3, | |
samples=1, | |
batch_size=8, | |
disable_progress=True, | |
): | |
"""Genrate audio for a list of prompt strings.""" | |
outputs = [] | |
for k in tqdm(range(0, len(prompts), batch_size)): | |
batch = prompts[k : k + batch_size] | |
with torch.no_grad(): | |
latents = self.model.inference( | |
batch, | |
self.scheduler, | |
steps, | |
guidance, | |
samples, | |
disable_progress=disable_progress, | |
) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
outputs += [item for item in wave] | |
if samples == 1: | |
return outputs | |
else: | |
return list(self.chunks(outputs, samples)) | |