JinhuaL1ANG's picture
v1
9a6dac6
import torch
import numpy as np
def calculate_isc(featuresdict, feat_layer_name, rng_seed, samples_shuffle, splits):
# print("Computing Inception Score")
features = featuresdict[feat_layer_name]
assert torch.is_tensor(features) and features.dim() == 2
N, C = features.shape
if samples_shuffle:
rng = np.random.RandomState(rng_seed)
features = features[rng.permutation(N), :]
features = features.double()
p = features.softmax(dim=1)
log_p = features.log_softmax(dim=1)
scores = []
for i in range(splits):
p_chunk = p[(i * N // splits) : ((i + 1) * N // splits), :] # δΈ€ιƒ¨εˆ†ηš„ι’„ζ΅‹ζ¦‚ηŽ‡
log_p_chunk = log_p[(i * N // splits) : ((i + 1) * N // splits), :] # log
q_chunk = p_chunk.mean(dim=0, keepdim=True) # ζ¦‚ηŽ‡ηš„ε‡ε€Ό
kl = p_chunk * (log_p_chunk - q_chunk.log()) #
kl = kl.sum(dim=1).mean().exp().item()
scores.append(kl)
# print("scores",scores)
return {
"inception_score_mean": float(np.mean(scores)),
"inception_score_std": float(np.std(scores)),
}