File size: 20,484 Bytes
9a6dac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import librosa
import torch
import json
import random
import math
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from torch import lerp
from torch.nn import ReflectionPad1d
import torch.nn.functional as F


def load_json(fname):
    with open(fname, "r") as f:
        data = json.load(f)
        return data


# def plot_spectrogram(fbank, filename=None, title=None, ylabel="freq_bin", ax=None):
#     r"""
#     Params: `fbank`: (`n_mel_bins`, `n_frames`)
#     """
#     if fbank.ndim > 2:
#         fbank = fbank.detach().cpu().squeeze()
#     else:
#         fbank = fbank.detach().cpu()
#     if ax is None:
#         _, ax = plt.subplots(1, 1)
#     if title is not None:
#         ax.set_title(title)
#     ax.set_ylabel(ylabel)
#     ax.imshow(fbank, origin="lower", aspect="auto", interpolation="nearest")
#     if filename is not None:
#         ax.figure.savefig(filename)
#     return ax
def plot_spectrogram(fbank, filename=None, title=None, ylabel=None, auto_amp=False, figsize=(16, 9)):
    r"""
    Params: `fbank`: (`n_mel_bins`, `n_frames`)
    """
    if fbank.ndim > 2:
        fbank = fbank.detach().cpu().squeeze()
    else:
        fbank = fbank.detach().cpu()
    
    fig, ax = plt.subplots(1, 1, figsize=figsize)

    fbank = fbank.numpy()

    if auto_amp:
        img=librosa.display.specshow(fbank, ax=ax)
    else:
        img=librosa.display.specshow(fbank, ax=ax, vmin=-10, vmax=0)  # x_axis='time', y_axis='mel', 

    if title is not None:
        ax.set_title(title)

    if ylabel is not None:
        ax.set_ylabel(ylabel)

    # fig.colorbar(img, ax=ax, format="%+2.f dB")
    plt.tight_layout()
    plt.subplots_adjust(left=0, right=1, top=1, bottom=0)  # Adjust subplots to fill the figure

    if filename is not None:
        ax.figure.savefig(filename)
    return ax


def get_current_time(out_format="%Y-%m-%d %H:%M:%S"):
    current_time = datetime.now()
    formatted_time = current_time.strftime(out_format)
    return formatted_time


def get_box_boundry(mask: torch.Tensor):
    r"""Get the box boundy of masked region."""
    ws, hs = torch.nonzero(mask, as_tuple=True)

    w_l, w_r = torch.min(ws), torch.max(ws)
    h_b, h_t = torch.min(hs), torch.max(hs)

    return (w_l, w_r), (h_b, h_t)


def get_neibor_with_mask(matrix, mask, reverse=False):
    assert matrix.shape == mask.shape

    # Pad the unmasked region using reflection if applicable
    if reverse:
        mask = ~mask.bool()

    (w_l, w_r), (h_b, h_t) = get_box_boundry(mask)

    mask_w_cntr = (w_r + w_l) // 2

    pad_l_fn = ReflectionPad1d((0, mask_w_cntr - w_l))
    matrix_l_cur = pad_l_fn(matrix[: w_l + 1, :].permute(1, 0)).permute(1, 0)
    pad_r_fn = ReflectionPad1d((w_r - mask_w_cntr - 1))
    import ipdb

    ipdb.set_trace()
    matrix_r_cur = pad_r_fn(matrix[w_r + 1 :, :].permute(1, 0)).permute(1, 0)
    # import ipdb; ipdb.set_trace()
    matrix_cur = torch.cat([matrix_l_cur, matrix_r_cur], dim=0)

    return matrix[mask] + matrix_cur[~mask]

    # def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
    #     '''
    #     Spherical linear interpolation
    #     Args:
    #         t (float/np.ndarray): Float value between 0.0 and 1.0
    #         v0 (np.ndarray): Starting vector
    #         v1 (np.ndarray): Final vector
    #         DOT_THRESHOLD (float): Threshold for considering the two vectors as
    #                                 colineal. Not recommended to alter this.
    #     Returns:
    #         v2 (np.ndarray): Interpolation vector between v0 and v1
    #     '''
    #     is_tensor = False
    #     if not isinstance(v0,np.ndarray):
    #         is_tensor = True
    #         device = v0.device
    #         v0 = v0.detach().cpu().numpy()
    #     if not isinstance(v1,np.ndarray):
    #         is_tensor = True
    #         device = v1.device  # overwrite if v0 is also Tensor
    #         v1 = v1.detach().cpu().numpy()
    #     # Copy the vectors to reuse them later
    #     v0_copy = np.copy(v0)
    #     v1_copy = np.copy(v1)
    #     # Normalize the vectors to get the directions and angles
    #     v0 = v0 / np.linalg.norm(v0)
    #     v1 = v1 / np.linalg.norm(v1)
    #     # Dot product with the normalized vectors (can't use np.dot in W)
    #     dot = np.sum(v0 * v1)
    #     # If absolute value of dot product is almost 1, vectors are ~colineal, so use lerp
    #     if np.abs(dot) > DOT_THRESHOLD:
    #         return lerp(t, v0_copy, v1_copy)
    #     # Calculate initial angle between v0 and v1
    #     theta_0 = np.arccos(dot)
    #     sin_theta_0 = np.sin(theta_0)
    #     # Angle at timestep t
    #     theta_t = theta_0 * t
    #     sin_theta_t = np.sin(theta_t)
    #     s0 = np.sin(theta_0 - theta_t) / sin_theta_0
    #     s1 = sin_theta_t / sin_theta_0
    #     v2 = s0*v0_copy + s1*v1_copy
    if is_tensor:
        res = torch.from_numpy(v2).to(device)
    else:
        res = v2
    return res


def normalize_along_channel(in_feat, eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(in_feat**2, dim=1, keepdim=True))
    return in_feat / (norm_factor + eps)


# def extract_and_fill(spectrum, a, b, sr, hop_length):
#     """
#     Extract a 1-second segment from (a, b) and fill the rest of the segment using repeat or reflection.

#     Parameters:
#     spectrum (Tensor): The input spectrum tensor.
#     a (float): The start time of the region with energy.
#     b (float): The end time of the region with energy.
#     sr (int): The sample rate of the spectrum.
#     hop_length (int)

#     Returns:
#     Tensor: The processed spectrum tensor.
#     """
#     n_frames = spectrum.size(1)
#     n_frames_per_sec = sr // hop_length
#     mask = (spectrum!=0).float()
#     # Convert time to samples
#     a_frame = math.floor(a * sr / hop_length)
#     b_frame = math.ceil(b * sr / hop_length)
#     assert a_frame < n_frames and b_frame < n_frames
#     duration = b_frame - a_frame

#     # If the energy region is shorter than 1 second, adjust
#     extract_duration = duration // 2 if duration <= n_frames_per_sec else n_frames_per_sec
#     padding = duration - extract_duration

#     start_frame = random.randint(a_frame, b_frame-extract_duration)
#     segment = spectrum[:, start_frame:start_frame+extract_duration, :]
#     segment = segment.repeat(1, n_frames//extract_duration+1, 1)[:, :n_frames, :]
#     segment *= mask

#     return segment


def extract_and_fill(spec, stt_frame, end_frame, tgt_length):
    """
    Extract a region with <= `tgt_length` from (`stt_frame`, `end_frame`) and fill the rest of the spec by repeating the extracted region.

    Param:
        spec: Tensor: input spectrogram, shape = (C,T,F).
        a: float: The start time of the region with energy.
        b: float: The end time of the region with energy.


    Returns:
        Tensor: the processed spectrum tensor.
    """
    assert (spec.ndim == 3 or spec.ndim == 4), "Format the input `spec` with the shape = (C, T, F) or (B,C,T,F)."

    total_length = spec.size(-2)
    assert stt_frame < total_length and end_frame < total_length

    duration = end_frame - stt_frame
    mask = (spec != 0).float()

    # If the energy region is shorter than 1 second, adjust
    extract_duration = duration // 2 if duration <= tgt_length else tgt_length

    start_frame = random.randint(stt_frame, end_frame - extract_duration)

    if spec.ndim == 3:
        segment = spec[:, start_frame : start_frame + extract_duration, :]
        segment = segment.repeat(1, total_length // extract_duration + 1, 1)[
            :, :total_length, :
        ]
    else:
        segment = spec[:, :, start_frame : start_frame + extract_duration, :]
        segment = segment.repeat(1, 1, total_length // extract_duration + 1, 1)[
            :, :, :total_length, :
        ]

    segment *= mask
    return segment


def fill_with_neighbor(spec, stt_frame, end_frame, neighbor_length):
    """
    Fill a region from (`stt_frame`, `end_frame`) with neighbor of `neighbor_length`

    Param:
        spec: Tensor: input spectrogram, shape = (C,T,F).
        stt_frame: int: The start frame of the region with energy.
        end_frame: int: The end frame of the region with energy.
        neighbor_length: int: selected length of neighbor


    Returns:
        Tensor: the processed spectrum tensor.
    """
    assert spec.ndim == 3, "Format the input `spec` with the shape = (C, T, F)."

    total_length = spec.size(1)
    assert stt_frame < total_length and end_frame < total_length

    duration = end_frame - stt_frame
    mask = torch.zeros_like(spec)
    mask[:, stt_frame : end_frame + 1, :] = 1

    left_duration = min(math.ceil(neighbor_length / 2), stt_frame)
    right_duration = min(neighbor_length - left_duration, total_length - end_frame - 1)

    if left_duration + right_duration < 1:
        print("Warning: cannot find effect positive part!")
        return torch.randn_like(segment)

    left_segment = spec[:, stt_frame - left_duration : stt_frame, :]
    right_segment = spec[:, end_frame + 1 : end_frame + right_duration + 1, :]
    segment = torch.cat([left_segment, right_segment], dim=1)
    segment = segment.repeat(
        1, total_length // (left_duration + right_duration) + 1, 1
    )[:, :total_length, :]
    segment = segment * mask + spec * (1 - mask)

    return segment


# def slerp(t, A, B, eps=1e-8):
#     """
#     Spherical Linear Interpolation (SLERP) between points A and B on a sphere.
#     """
#     A = A / (torch.norm(A, p=2) + eps)
#     B = B / (torch.norm(B, p=2) + eps)

#     dot_product = torch.sum(A * B)
#     dot_product = torch.clamp(dot_product, -1.0, 1.0)

#     theta = torch.acos(dot_product)

#     if torch.abs(theta) < 1e-10:
#         return (1 - t) * A + t * B

#     sin_theta = torch.sin(theta)
#     A_factor = torch.sin((1 - t) * theta) / sin_theta
#     B_factor = torch.sin(t * theta) / sin_theta

#     return A_factor * A + B_factor * B


def lerp(t, v0, v1):
    """
    Linear interpolation in PyTorch.
    Args:
        t (float/torch.Tensor): Float value between 0.0 and 1.0
        v0 (torch.Tensor): Starting vector
        v1 (torch.Tensor): Final vector
    Returns:
        v2 (torch.Tensor): Interpolation vector between v0 and v1
    """
    return (1 - t) * v0 + t * v1


def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
    """
    Spherical linear interpolation in PyTorch.
    Args:
        t (float/torch.Tensor): Float value between 0.0 and 1.0
        v0 (torch.Tensor): Starting vector
        v1 (torch.Tensor): Final vector
        DOT_THRESHOLD (float): Threshold for considering the two vectors as collinear. Not recommended to alter this.
    Returns:
        v2 (torch.Tensor): Interpolation vector between v0 and v1
    """
    device = v0.device
    # Normalize the vectors to get the directions and angles
    v0_norm = v0 / torch.norm(v0)
    v1_norm = v1 / torch.norm(v1)
    # Dot product with the normalized vectors
    dot = torch.sum(v0_norm * v1_norm)
    # If absolute value of dot product is almost 1, vectors are ~collinear, so use lerp
    if torch.abs(dot) > DOT_THRESHOLD:
        return lerp(t, v0, v1)

    # Calculate initial angle between v0 and v1
    theta_0 = torch.acos(dot)
    sin_theta_0 = torch.sin(theta_0)
    # Angle at timestep t
    theta_t = theta_0 * t
    sin_theta_t = torch.sin(theta_t)
    s0 = torch.sin(theta_0 - theta_t) / sin_theta_0
    s1 = sin_theta_t / sin_theta_0
    v2 = s0 * v0 + s1 * v1

    return v2


def geodesic_distance(X, Y):
    """
    Compute the geodesic distance between two points X and Y on a sphere.
    """
    dot_product = torch.sum(X * Y)
    dot_product = torch.clamp(dot_product, -1.0, 1.0)
    return torch.acos(dot_product)


def optimize_neighborhood_points(
    A,
    B,
    M,
    t,
    learning_rate=1e-4,
    iterations=100,
    enable_penalty=False,
    enable_tangent_proj=True,
):
    """
    Optimize the neighborhood points A_e and B_e to minimize the distance between
    the SLERP interpolation and the given interpolation point M.
    """
    # Initialize perturbations
    epsilon_A = torch.zeros_like(A, requires_grad=True)
    epsilon_B = torch.zeros_like(B, requires_grad=True)

    optimizer = torch.optim.SGD([epsilon_A, epsilon_B], lr=learning_rate)  # Adam

    for i in range(iterations):
        optimizer.zero_grad()

        # Compute current neighborhood points
        A_e = A + epsilon_A
        B_e = B + epsilon_B

        # Compute the SLERP interpolation
        P = slerp(t, A_e, B_e)

        # Compute the distance
        dist = geodesic_distance(M, P)
        if enable_penalty:
            orthogonality_penalty = torch.sum(A_e * B_e) ** 2
            dist += orthogonality_penalty

        # Backpropagation
        dist.backward()

        if enable_tangent_proj:
            with torch.no_grad():
                epsilon_A.grad = project_onto_tangent_space(epsilon_A.grad, A_e)
                epsilon_B.grad = project_onto_tangent_space(epsilon_B.grad, B_e)

        # Clip gradients to prevent large updates
        torch.nn.utils.clip_grad_norm_([epsilon_A, epsilon_B], max_norm=1.0)

        # Check gradients for NaNs
        if torch.isnan(epsilon_A.grad).any() or torch.isnan(epsilon_B.grad).any():
            print(f"NaN encountered in gradients at iteration {i}")
            break

        # Update perturbations
        optimizer.step()

    return A + epsilon_A.detach(), B + epsilon_B.detach()


# def optimize_neighborhood_points(A, B, M, t, learning_rate=1e-4, iterations=100, enable_penalty=False, eps=1e-8):
#     """
#     Optimize the neighborhood points A_e and B_e to minimize the distance between
#     the SLERP interpolation and the given interpolation point M.
#     """
#     # Initialize perturbations
#     epsilon_A = torch.zeros_like(A, requires_grad=True)
#     epsilon_B = torch.zeros_like(B, requires_grad=True)

#     optimizer = torch.optim.SGD([epsilon_A, epsilon_B], lr=learning_rate)

#     for _ in range(iterations):
#         optimizer.zero_grad()

#         # Compute current neighborhood points
#         A_e = A + epsilon_A
#         B_e = B + epsilon_B

#         # # Normalize to ensure they are on the unit sphere
#         # A_e = A_e / (torch.norm(A_e, p=2) + eps)
#         # B_e = B_e / (torch.norm(B_e, p=2) + eps)

#         # Compute the SLERP interpolation
#         P = slerp(t, A_e, B_e)

#         # Compute the distance
#         dist = geodesic_distance(M, P)
#         if enable_penalty:
#             orthogonality_penalty = torch.sum(A_e * B_e) ** 2
#             dist += orthogonality_penalty

#         # Backpropagation
#         dist.backward()

#         # Update perturbations
#         optimizer.step()

#     return A + epsilon_A.detach(), B + epsilon_B.detach()


# def optimize_neighborhood_points(A, B, M, t, learning_rate=2e-5, iterations=100, enable_penalty=False):
#     """
#     [Deprecated] this method tends to NaN
#     Optimize the neighborhood points A_e and B_e to minimize the distance between
#     the SLERP interpolation and the given interpolation point M.
#     """
#     # Initialize perturbations
#     A_e = A.clone().detach().requires_grad_(True)
#     B_e = B.clone().detach().requires_grad_(True)

#     optimizer = torch.optim.SGD([A_e, B_e], lr=learning_rate)

#     for _ in range(iterations):
#         optimizer.zero_grad()
#         # Compute the SLERP interpolation
#         P = slerp(t, A_e, B_e)

#         # Compute the distance
#         dist = geodesic_distance(M, P)
#         if enable_penalty:
#             orthogonality_penalty = torch.sum(A_e * B_e) ** 2
#             dist += orthogonality_penalty

#         # Backpropagation
#         dist.backward()

#         with torch.no_grad():
#             A_e.grad = project_onto_tangent_space(A_e.grad, A_e)
#             B_e.grad = project_onto_tangent_space(B_e.grad, B_e)

#         # Update perturbations
#         optimizer.step()

#     return A_e.detach().requires_grad_(False), B_e.detach().requires_grad_(False)


def project_onto_tangent_space(g, h, eps=1e-8):
    """
    Projects vector g onto the tangent space of vector h.

    Args:
        g (torch.Tensor): The vector to be projected.
        h (torch.Tensor): The vector whose tangent space g is projected onto.

    Returns:
        torch.Tensor: The projection of g onto the tangent space of h.
    """
    g = torch.tensor(g)
    h = torch.tensor(h)

    # Compute the dot product g . h
    dot_product = torch.sum(g * h)

    # Compute the squared norm of h, h . h
    h_norm_squared = torch.sum(h * h) + eps

    # Calculate the projection scalar
    proj_scalar = dot_product / h_norm_squared

    # Compute the component of g in the direction of h
    g_para = proj_scalar * h

    # Compute the projection of g onto the tangent space of h
    g_ortho = g - g_para

    return g_ortho


def label2caption(label, background_sound=None, template="{} can be heard"):
    r"""This is a helper function converting list of labels to captions."""
    if background_sound is None:
        return [template.format(", ".join(l)) for l in label]

    if isinstance(background_sound, str):
        background_sound = [[background_sound]] * len(label)

    assert len(label) == len(
        background_sound
    ), "the number of `background_sound` should match the number of `label`."

    caption = []
    for l, bg in zip(label, background_sound):
        cap = template.format(", ".join(l))
        cap += " with the background sounds of {}".format(", ".join(bg))
        caption.append(cap)

    return caption


def load_json(fname):
    with open(fname, "r") as f:
        data = json.load(f)
        return data


def identity_projection(g, *args, **kwargs):
    return g


def convert_float_to_int(data):
    data *= 32768
    data = np.nan_to_num(data, nan=0.0, posinf=32767, neginf=-32768)
    data = np.clip(data, -32768, 32767)
    return data


def get_edit_mask(mask, dx, dy, resize_scale_x, resize_scale_y):
    _mask = (
        F.interpolate(
            mask.unsqueeze(0).unsqueeze(0),
            (
                int(mask.shape[-2] * resize_scale_y),
                int(mask.shape[-1] * resize_scale_x),
            ),
        )
        > 0.5
    )
    _mask = torch.roll(
        _mask,
        (int(dy * resize_scale_y), int(dx * resize_scale_x)),
        (-2, -1),
    )

    if resize_scale_x != 1 or resize_scale_y != 1:
        mask_res = torch.zeros(1, 1, mask.shape[-2], mask.shape[-1]).to(mask.device)
        pad_x = (mask_res.shape[-1] - _mask.shape[-1]) // 2
        pad_y = (mask_res.shape[-2] - _mask.shape[-2]) // 2
        px_tmp, py_tmp = max(pad_x, 0), max(pad_y, 0)
        px_tar, py_tar = max(-pad_x, 0), max(-pad_y, 0)
        mask_res[:,:,py_tmp:py_tmp+_mask.shape[-2],px_tmp:px_tmp+_mask.shape[-1]] = _mask[
            :,:,py_tar:py_tar+mask_res.shape[-2],px_tar:px_tar+mask_res.shape[-1]]
        # # Binary mask
        # mask_res = mask_res > 0.5
    # else:
    #     mask_res = _mask > 0.5
    else:
        mask_res = _mask

    return mask_res.squeeze()  # (y,x)


if __name__ == "__main__":
    # import torch
    # spec = torch.rand(1024, 64)
    # # import ipdb; ipdb.set_trace()
    # plot_spectrogram(spec.permute(1,0),'test.png')

    # m = torch.rand(4,4)
    # mask = [[0,0,0,0],[0,1,1,0],[0,1,1,0],[0,0,0,0]]
    # mask = torch.tensor(mask).bool()
    # print(m)
    # print(get_neibor_with_mask(m, mask))

    # audio = torch.zeros(1,1024,64)
    # audio[:,250:750,:]=torch.rand(1,500,64)
    # res=extract_and_fill(audio, a=5,b=7.5, sr=16000, hop_length=160)
    # # import ipdb; ipdb.set_trace()

    # Try SLERP
    # A = torch.tensor([1.0, 0.0, 0.0, 0.0], dtype=torch.float32)  # Point on the unit sphere
    # B = torch.tensor([0.0, 1.0, 0.0, 0.0], dtype=torch.float32)  # Another point on the unit sphere

    # t = 0.5  # Interpolation parameter (0 <= t <= 1)
    # M = torch.tensor([0.7, 0.0, 1.2, 0.0], dtype=torch.float32) # slerp(t, A, B)  # Given interpolation point
    # A_e, B_e = optimize_neighborhood_points(A, B, M, t, enable_penalty=True)

    # print("Optimized A_e:", A_e)
    # print("Optimized B_e:", B_e)

    # spec = torch.arange(36).view(6,6)[None,...]
    # res = fill_with_neighbor(spec, 2, 4, 2)

    # Example usage
    g = torch.tensor([1.0, 2.0, 3.0])
    h = torch.tensor([4.0, 5.0, 6.0])

    g_ortho = project_onto_tangent_space(g, h)
    print(g_ortho)
    import ipdb

    ipdb.set_trace()