File size: 12,671 Bytes
9a6dac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
from einops import rearrange, repeat

# import cv2

# from basicsr.utils import img2tensor, tensor2img
import os
import math
import inspect
import numpy as np

from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention_processor import Attention
from diffusers.models.attention import FeedForward, AdaLayerNorm


@dataclass
class Transformer2DModelOutput(BaseOutput):
    sample: torch.FloatTensor


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


class Transformer2DModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        use_sc_attn: bool = False,
        use_st_attn: bool = False,
        updown="mid",
        layer_id=0,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = in_channels is not None
        self.is_input_vectorized = num_vector_embeds is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized:
            raise ValueError(
                f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(
                num_groups=norm_num_groups,
                num_channels=in_channels,
                eps=1e-6,
                affine=True,
            )
            if use_linear_projection:
                self.proj_in = nn.Linear(in_channels, inner_dim)
            else:
                self.proj_in = nn.Conv2d(
                    in_channels, inner_dim, kernel_size=1, stride=1, padding=0
                )
        else:
            raise NotImplementedError

        # Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                    use_sc_attn=use_sc_attn,
                    use_st_attn=False,
                    updown=updown,
                    layer_id=layer_id,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if use_linear_projection:
            self.proj_out = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_out = nn.Conv2d(
                inner_dim, in_channels, kernel_size=1, stride=1, padding=0
            )

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        timestep=None,
        return_dict: bool = True,
        iter_cur=0,
        save_kv=True,
        mode="drag",
        mask=None,
    ):
        # Convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # Input
        assert (
            hidden_states.dim() == 5
        ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")

        if encoder_hidden_states is not None:
            encoder_hidden_states = repeat(
                encoder_hidden_states, "b n c -> (b f) n c", f=video_length
            )

        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)

        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
                batch, height * weight, inner_dim
            )
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
                batch, height * weight, inner_dim
            )
            hidden_states = self.proj_in(hidden_states)

        # Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                timestep=timestep,
                video_length=video_length,
                iter_cur=iter_cur,
                save_kv=save_kv,
                mode=mode,
                mask=mask,
            )

        # Output
        if not self.use_linear_projection:
            hidden_states = (
                hidden_states.reshape(batch, height, weight, inner_dim)
                .permute(0, 3, 1, 2)
                .contiguous()
            )
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = (
                hidden_states.reshape(batch, height, weight, inner_dim)
                .permute(0, 3, 1, 2)
                .contiguous()
            )

        output = hidden_states + residual
        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)


class BasicTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        use_sc_attn: bool = False,
        use_st_attn: bool = False,
        updown="mid",
        layer_id=0,
    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention
        self.use_ada_layer_norm = num_embeds_ada_norm is not None

        # Attn with temporal modeling
        self.use_sc_attn = use_sc_attn
        self.use_st_attn = use_st_attn
        attn_type = Attention
        self.attn1 = attn_type(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
        )  # is a self-attention
        self.attn1.updown = updown
        self.attn1.layer_id = layer_id
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)

        # Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.attn2 = None

        self.norm1 = (
            AdaLayerNorm(dim, num_embeds_ada_norm)
            if self.use_ada_layer_norm
            else nn.LayerNorm(dim)
        )

        if cross_attention_dim is not None:
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim)
            )
        else:
            self.norm2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(dim)

    def get_attn_args(self, attn_layer: nn.Module, attn_kwargs: dict):
        attn_parameters = set(inspect.signature(attn_layer.processor.__call__).parameters.keys())
        unused_kwargs = [
            k for k, _ in attn_kwargs.items() if k not in attn_parameters
        ]
        if len(unused_kwargs) > 0:
            print(
                f"Attention kwargs {unused_kwargs} are not expected by {attn_layer.__class__.__name__} and will be ignored."
            )

        used_kwargs = {k: w for k, w in attn_kwargs.items() if k in attn_parameters}
        return used_kwargs


    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        timestep=None,
        attention_mask=None,
        video_length=None,
        iter_cur=0,
        save_kv=True,
        mode="drag",
        mask=None,
    ):
        # SparseCausal-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep)
            if self.use_ada_layer_norm
            else self.norm1(hidden_states)
        )
        attn1_kwargs = self.get_attn_args(self.attn1, 
            {
                'video_length': video_length,
                'iter_cur': iter_cur,
                'save_kv': save_kv,
                'mode': mode,
                'mask': mask,
            })
        hidden_states = (
            self.attn1(
                norm_hidden_states,
                attention_mask=attention_mask,
                **attn1_kwargs,
            )
            + hidden_states
        )

        if self.attn2 is not None:
            # Cross-Attention
            norm_hidden_states = (
                self.norm2(hidden_states, timestep)
                if self.use_ada_layer_norm
                else self.norm2(hidden_states)
            )

            attn2_kwargs = {'iter_cur': -1 if save_kv else iter_cur}
            attn2_kwargs = self.get_attn_args(self.attn2, attn2_kwargs)
            hidden_states = (
                self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **attn2_kwargs,
                )
                + hidden_states
            )

        # Feed-forward
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
        return hidden_states