Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,212 Bytes
9a6dac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import torch
from pathlib import Path
import os
def path_to_sharedkey(path, dataset_name, classes=None):
if dataset_name.lower() == "vggsound":
# a generic oneliner which extracts the unique filename for the dataset.
# Works on both FakeFolder and VGGSound* datasets
sharedkey = Path(path).stem.replace("_mel", "").split("_sample_")[0]
elif dataset_name.lower() == "vas":
# in the case of vas the procedure is a bit more tricky and involves relying on the premise that
# the folder names (.../VAS_validation/cls_0, .../cls_1 etc) are made after enumerating sorted list
# of classes.
classes = sorted(classes)
target_to_label = {f"cls_{i}": c for i, c in enumerate(classes)}
# replacing class folder with the name of the class to match the original dataset (cls_2 -> dog)
for folder_cls_name, label in target_to_label.items():
path = path.replace(folder_cls_name, label).replace(
"melspec_10s_22050hz/", ""
)
# merging video name with class name to make a unique shared key
sharedkey = (
Path(path).parent.stem
+ "_"
+ Path(path).stem.replace("_mel", "").split("_sample_")[0]
)
elif dataset_name.lower() == "caps": # stem : θ·ε/.δΉι΄ηι¨ε
sharedkey = Path(path).stem.replace("_mel", "").split("_sample_")[0] # θ·εΎεζδ»Άεη§°
else:
raise NotImplementedError
return sharedkey
def calculate_kl(featuresdict_1, featuresdict_2, feat_layer_name, same_name=True):
# test_input(featuresdict_1, featuresdict_2, feat_layer_name, dataset_name, classes)
if not same_name:
return (
{
"kullback_leibler_divergence_sigmoid": float(-1),
"kullback_leibler_divergence_softmax": float(-1),
},
None,
None,
)
# print('KL: Assuming that `input2` is "pseudo" target and `input1` is prediction. KL(input2_i||input1_i)')
EPS = 1e-6
features_1 = featuresdict_1[feat_layer_name]
features_2 = featuresdict_2[feat_layer_name]
# # print('features_1 ',features_1.shape) # the predicted (num*10, class_num)
# # print('features_2 ',features_2.shape) # the true
paths_1 = [os.path.basename(x) for x in featuresdict_1["file_path_"]]
paths_2 = [os.path.basename(x) for x in featuresdict_2["file_path_"]]
# # print('paths_1 ',len(paths_1)) its path
# # print('paths_2 ',len(paths_2))
path_to_feats_1 = {p: f for p, f in zip(paths_1, features_1)}
# #print(path_to_feats_1)
path_to_feats_2 = {p: f for p, f in zip(paths_2, features_2)}
# # dataset_name: caps
# # in input1 (fakes) can have multiple samples per video, while input2 has only one real
# sharedkey_to_feats_1 = {path_to_sharedkey(p, dataset_name, classes): [] for p in paths_1}
sharedkey_to_feats_1 = {p: path_to_feats_1[p] for p in paths_1}
sharedkey_to_feats_2 = {p: path_to_feats_2[p] for p in paths_2}
# sharedkey_to_feats_2 = {path_to_sharedkey(p, dataset_name, classes):path_to_feats_2[p] for p in paths_1}
features_1 = []
features_2 = []
for sharedkey, feat_2 in sharedkey_to_feats_2.items():
# print("feat_2",feat_2)
if sharedkey not in sharedkey_to_feats_1.keys():
print("%s is not in the generation result" % sharedkey)
continue
features_1.extend([sharedkey_to_feats_1[sharedkey]])
# print("feature_step",len(features_1))
# print("share",sharedkey_to_feats_1[sharedkey])
# just replicating the ground truth logits to compare with multiple samples in prediction
# samples_num = len(sharedkey_to_feats_1[sharedkey])
features_2.extend([feat_2])
features_1 = torch.stack(features_1, dim=0)
features_2 = torch.stack(features_2, dim=0)
kl_ref = torch.nn.functional.kl_div(
(features_1.softmax(dim=1) + EPS).log(),
features_2.softmax(dim=1),
reduction="none",
) / len(features_1)
kl_ref = torch.mean(kl_ref, dim=-1)
# AudioGen use this formulation
kl_softmax = torch.nn.functional.kl_div(
(features_1.softmax(dim=1) + EPS).log(),
features_2.softmax(dim=1),
reduction="sum",
) / len(features_1)
# For multi-class audio clips, this formulation could be better
kl_sigmoid = torch.nn.functional.kl_div(
(features_1.sigmoid() + EPS).log(), features_2.sigmoid(), reduction="sum"
) / len(features_1)
return (
{
"kullback_leibler_divergence_sigmoid": float(kl_sigmoid),
"kullback_leibler_divergence_softmax": float(kl_softmax),
},
kl_ref,
paths_1,
)
def test_input(featuresdict_1, featuresdict_2, feat_layer_name, dataset_name, classes):
assert feat_layer_name == "logits", "This KL div metric is implemented on logits."
assert (
"file_path_" in featuresdict_1 and "file_path_" in featuresdict_2
), "File paths are missing"
assert len(featuresdict_1) >= len(
featuresdict_2
), "There are more samples in input1, than in input2"
assert (
len(featuresdict_1) % len(featuresdict_2) == 0
), "Size of input1 is not a multiple of input1 size."
if dataset_name == "vas":
assert (
classes is not None
), f"Specify classes if you are using vas dataset. Now `classes` β {classes}"
print(
"KL: when FakesFolder on VAS is used as a dataset, we assume the original labels were sorted",
"to produce the target_ids. E.g. `baby` -> `cls_0`; `cough` -> `cls_1`; `dog` -> `cls_2`.",
)
if __name__ == "__main__":
# p = torch.tensor([0.25, 0.25, 0.25, 0.25]).view(1, 4)
# q = torch.tensor([0.25, 0.25, 0.25, 0.25]).view(1, 4)
# 0.
p = torch.tensor([0.5, 0.6, 0.7]).view(3, 1)
p_ = 1 - p
p = torch.cat([p, p_], dim=1).view(-1, 2)
print(p)
q = torch.tensor([0.5, 0.6, 0.7]).view(3, 1)
q_ = 1 - q
q = torch.cat([q, q_], dim=1).view(-1, 2)
print(q.shape)
kl = torch.nn.functional.kl_div(torch.log(q), p, reduction="sum")
# 0.0853
print(kl)
|