Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,613 Bytes
9a6dac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
from audioldm_eval.datasets.load_mel import load_npy_data, MelPairedDataset, WaveDataset
import numpy as np
import argparse
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from audioldm_eval.metrics.fad import FrechetAudioDistance
from audioldm_eval import calculate_fid, calculate_isc, calculate_kid, calculate_kl
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
from audioldm_eval.feature_extractors.panns import Cnn14
from audioldm_eval.audio.tools import save_pickle, load_pickle, write_json, load_json
from ssr_eval.metrics import AudioMetrics
import audioldm_eval.audio as Audio
import time
class EvaluationHelper:
def __init__(self, sampling_rate, device, backbone="cnn14") -> None:
self.device = device
self.backbone = backbone
self.sampling_rate = sampling_rate
self.frechet = FrechetAudioDistance(
use_pca=False,
use_activation=False,
verbose=False,
)
self.lsd_metric = AudioMetrics(self.sampling_rate)
self.frechet.model = self.frechet.model.to(device)
features_list = ["2048", "logits"]
if self.sampling_rate == 16000:
self.mel_model = Cnn14(
features_list=features_list,
sample_rate=16000,
window_size=512,
hop_size=160,
mel_bins=64,
fmin=50,
fmax=8000,
classes_num=527,
)
elif self.sampling_rate == 32000:
self.mel_model = Cnn14(
features_list=features_list,
sample_rate=32000,
window_size=1024,
hop_size=320,
mel_bins=64,
fmin=50,
fmax=14000,
classes_num=527,
)
else:
raise ValueError(
"We only support the evaluation on 16kHz and 32kHz sampling rate."
)
if self.sampling_rate == 16000:
self._stft = Audio.TacotronSTFT(512, 160, 512, 64, 16000, 50, 8000)
elif self.sampling_rate == 32000:
self._stft = Audio.TacotronSTFT(1024, 320, 1024, 64, 32000, 50, 14000)
else:
raise ValueError(
"We only support the evaluation on 16kHz and 32kHz sampling rate."
)
self.mel_model.eval()
self.mel_model.to(self.device)
self.fbin_mean, self.fbin_std = None, None
def main(
self,
generate_files_path,
groundtruth_path,
limit_num=None,
):
self.file_init_check(generate_files_path)
self.file_init_check(groundtruth_path)
same_name = self.get_filename_intersection_ratio(
generate_files_path, groundtruth_path, limit_num=limit_num
)
metrics = self.calculate_metrics(generate_files_path, groundtruth_path, same_name, limit_num)
return metrics
def file_init_check(self, dir):
assert os.path.exists(dir), "The path does not exist %s" % dir
assert len(os.listdir(dir)) > 1, "There is no files in %s" % dir
def get_filename_intersection_ratio(
self, dir1, dir2, threshold=0.99, limit_num=None
):
self.datalist1 = [os.path.join(dir1, x) for x in os.listdir(dir1)]
self.datalist1 = sorted(self.datalist1)
self.datalist1 = [item for item in self.datalist1 if item.endswith(".wav")]
self.datalist2 = [os.path.join(dir2, x) for x in os.listdir(dir2)]
self.datalist2 = sorted(self.datalist2)
self.datalist2 = [item for item in self.datalist2 if item.endswith(".wav")]
data_dict1 = {os.path.basename(x): x for x in self.datalist1}
data_dict2 = {os.path.basename(x): x for x in self.datalist2}
keyset1 = set(data_dict1.keys())
keyset2 = set(data_dict2.keys())
intersect_keys = keyset1.intersection(keyset2)
if (
len(intersect_keys) / len(keyset1) > threshold
and len(intersect_keys) / len(keyset2) > threshold
):
'''
print(
"+Two path have %s intersection files out of total %s & %s files. Processing two folder with same_name=True"
% (len(intersect_keys), len(keyset1), len(keyset2))
)
'''
return True
else:
'''
print(
"-Two path have %s intersection files out of total %s & %s files. Processing two folder with same_name=False"
% (len(intersect_keys), len(keyset1), len(keyset2))
)
'''
return False
def calculate_lsd(self, pairedloader, same_name=True, time_offset=160 * 7):
if same_name == False:
return {
"lsd": -1,
"ssim_stft": -1,
}
# print("Calculating LSD using a time offset of %s ..." % time_offset)
lsd_avg = []
ssim_stft_avg = []
for _, _, filename, (audio1, audio2) in tqdm(pairedloader, leave=False):
audio1 = audio1.cpu().numpy()[0, 0]
audio2 = audio2.cpu().numpy()[0, 0]
# If you use HIFIGAN (verified on 2023-01-12), you need seven frames' offset
audio1 = audio1[time_offset:]
audio1 = audio1 - np.mean(audio1)
audio2 = audio2 - np.mean(audio2)
audio1 = audio1 / np.max(np.abs(audio1))
audio2 = audio2 / np.max(np.abs(audio2))
min_len = min(audio1.shape[0], audio2.shape[0])
audio1, audio2 = audio1[:min_len], audio2[:min_len]
try:
result = self.lsd(audio1, audio2)
lsd_avg.append(result["lsd"])
ssim_stft_avg.append(result["ssim"])
except:
continue
return {"lsd": np.mean(lsd_avg), "ssim_stft": np.mean(ssim_stft_avg)}
def lsd(self, audio1, audio2):
result = self.lsd_metric.evaluation(audio1, audio2, None)
return result
def calculate_psnr_ssim(self, pairedloader, same_name=True):
if same_name == False:
return {"psnr": -1, "ssim": -1}
psnr_avg = []
ssim_avg = []
for mel_gen, mel_target, filename, _ in tqdm(pairedloader, leave=False):
mel_gen = mel_gen.cpu().numpy()[0]
mel_target = mel_target.cpu().numpy()[0]
psnrval = psnr(mel_gen, mel_target)
if np.isinf(psnrval):
print("Infinite value encountered in psnr %s " % filename)
continue
psnr_avg.append(psnrval)
ssim_avg.append(ssim(mel_gen, mel_target))
return {"psnr": np.mean(psnr_avg), "ssim": np.mean(ssim_avg)}
def calculate_metrics(self, generate_files_path, groundtruth_path, same_name, limit_num=None):
# Generation, target
torch.manual_seed(0)
num_workers = 0
outputloader = DataLoader(
WaveDataset(
generate_files_path,
self.sampling_rate,
limit_num=limit_num,
),
batch_size=1,
sampler=None,
num_workers=num_workers,
)
resultloader = DataLoader(
WaveDataset(
groundtruth_path,
self.sampling_rate,
limit_num=limit_num,
),
batch_size=1,
sampler=None,
num_workers=num_workers,
)
pairedloader = DataLoader(
MelPairedDataset(
generate_files_path,
groundtruth_path,
self._stft,
self.sampling_rate,
self.fbin_mean,
self.fbin_std,
limit_num=limit_num,
),
batch_size=1,
sampler=None,
num_workers=16,
)
out = {}
metric_lsd = self.calculate_lsd(pairedloader, same_name=same_name)
out.update(metric_lsd)
featuresdict_2 = self.get_featuresdict(resultloader)
featuresdict_1 = self.get_featuresdict(outputloader)
# if cfg.have_kl:
metric_psnr_ssim = self.calculate_psnr_ssim(pairedloader, same_name=same_name)
out.update(metric_psnr_ssim)
metric_kl, kl_ref, paths_1 = calculate_kl(
featuresdict_1, featuresdict_2, "logits", same_name
)
out.update(metric_kl)
metric_isc = calculate_isc(
featuresdict_1,
feat_layer_name="logits",
splits=10,
samples_shuffle=True,
rng_seed=2020,
)
out.update(metric_isc)
metric_fid = calculate_fid(
featuresdict_1, featuresdict_2, feat_layer_name="2048"
)
out.update(metric_fid)
# Gen, target
fad_score = self.frechet.score(generate_files_path, groundtruth_path, limit_num=limit_num)
out.update(fad_score)
metric_kid = calculate_kid(
featuresdict_1,
featuresdict_2,
feat_layer_name="2048",
subsets=100,
subset_size=1000,
degree=3,
gamma=None,
coef0=1,
rng_seed=2020,
)
out.update(metric_kid)
'''
print("\n".join((f"{k}: {v:.7f}" for k, v in out.items())))
print("\n")
print(limit_num)
print(
f'KL_Sigmoid: {out.get("kullback_leibler_divergence_sigmoid", float("nan")):8.5f};',
f'KL: {out.get("kullback_leibler_divergence_softmax", float("nan")):8.5f};',
f'PSNR: {out.get("psnr", float("nan")):.5f}',
f'SSIM: {out.get("ssim", float("nan")):.5f}',
f'ISc: {out.get("inception_score_mean", float("nan")):8.5f} ({out.get("inception_score_std", float("nan")):5f});',
f'KID: {out.get("kernel_inception_distance_mean", float("nan")):.5f}',
f'({out.get("kernel_inception_distance_std", float("nan")):.5f})',
f'FD: {out.get("frechet_distance", float("nan")):8.5f};',
f'FAD: {out.get("frechet_audio_distance", float("nan")):.5f}',
f'LSD: {out.get("lsd", float("nan")):.5f}',
f'SSIM_STFT: {out.get("ssim_stft", float("nan")):.5f}',
)
'''
result = {
"frechet_distance": out.get("frechet_distance", float("nan")),
"frechet_audio_distance": out.get("frechet_audio_distance", float("nan")),
"kl_sigmoid": out.get(
"kullback_leibler_divergence_sigmoid", float("nan")
),
"kl_softmax": out.get(
"kullback_leibler_divergence_softmax", float("nan")
),
"lsd": out.get("lsd", float("nan")),
"psnr": out.get("psnr", float("nan")),
"ssim": out.get("ssim", float("nan")),
"ssim_stft": out.get("ssim_stft", float("nan")),
"is_mean": out.get("inception_score_mean", float("nan")),
"is_std": out.get("inception_score_std", float("nan")),
"kid_mean": out.get(
"kernel_inception_distance_mean", float("nan")
),
"kid_std": out.get(
"kernel_inception_distance_std", float("nan")
),
}
result = {k: round(v, 4) for k, v in result.items()}
json_path = generate_files_path + "_evaluation_results.json"
write_json(result, json_path)
return result
def get_featuresdict(self, dataloader):
out = None
out_meta = None
# transforms=StandardNormalizeAudio()
for waveform, filename in tqdm(dataloader, leave=False):
try:
metadict = {
"file_path_": filename,
}
waveform = waveform.squeeze(1)
# batch = transforms(batch)
waveform = waveform.float().to(self.device)
with torch.no_grad():
featuresdict = self.mel_model(waveform)
# featuresdict = self.mel_model.convert_features_tuple_to_dict(features)
featuresdict = {k: [v.cpu()] for k, v in featuresdict.items()}
if out is None:
out = featuresdict
else:
out = {k: out[k] + featuresdict[k] for k in out.keys()}
if out_meta is None:
out_meta = metadict
else:
out_meta = {k: out_meta[k] + metadict[k] for k in out_meta.keys()}
except Exception as e:
import ipdb
ipdb.set_trace()
print("PANNs Inference error: ", e)
continue
out = {k: torch.cat(v, dim=0) for k, v in out.items()}
return {**out, **out_meta}
def sample_from(self, samples, number_to_use):
assert samples.shape[0] >= number_to_use
rand_order = np.random.permutation(samples.shape[0])
return samples[rand_order[: samples.shape[0]], :]
'''
if __name__ == "__main__":
import yaml
import argparse
from audioldm_eval import EvaluationHelper
import torch
parser = argparse.ArgumentParser()
parser.add_argument(
"-g",
"--generation_result_path",
type=str,
required=False,
help="Audio sampling rate during evaluation",
default="/mnt/fast/datasets/audio/audioset/2million_audioset_wav/balanced_train_segments",
)
parser.add_argument(
"-t",
"--target_audio_path",
type=str,
required=False,
help="Audio sampling rate during evaluation",
default="/mnt/fast/datasets/audio/audioset/2million_audioset_wav/eval_segments",
)
parser.add_argument(
"-sr",
"--sampling_rate",
type=int,
required=False,
help="Audio sampling rate during evaluation",
default=16000,
)
parser.add_argument(
"-l",
"--limit_num",
type=int,
required=False,
help="Audio clip numbers limit for evaluation",
default=None,
)
args = parser.parse_args()
device = torch.device(f"cuda:{0}")
evaluator = EvaluationHelper(args.sampling_rate, device)
metrics = evaluator.main(
args.generation_result_path,
args.target_audio_path,
limit_num=args.limit_num,
same_name=args.same_name,
)
print(metrics)
''' |