File size: 14,613 Bytes
9a6dac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
from audioldm_eval.datasets.load_mel import load_npy_data, MelPairedDataset, WaveDataset
import numpy as np
import argparse

import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from audioldm_eval.metrics.fad import FrechetAudioDistance
from audioldm_eval import calculate_fid, calculate_isc, calculate_kid, calculate_kl
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
from audioldm_eval.feature_extractors.panns import Cnn14
from audioldm_eval.audio.tools import save_pickle, load_pickle, write_json, load_json
from ssr_eval.metrics import AudioMetrics
import audioldm_eval.audio as Audio

import time


class EvaluationHelper:
    def __init__(self, sampling_rate, device, backbone="cnn14") -> None:

        self.device = device
        self.backbone = backbone
        self.sampling_rate = sampling_rate
        self.frechet = FrechetAudioDistance(
            use_pca=False,
            use_activation=False,
            verbose=False,
        )
        self.lsd_metric = AudioMetrics(self.sampling_rate)
        self.frechet.model = self.frechet.model.to(device)

        features_list = ["2048", "logits"]
        if self.sampling_rate == 16000:
            self.mel_model = Cnn14(
                features_list=features_list,
                sample_rate=16000,
                window_size=512,
                hop_size=160,
                mel_bins=64,
                fmin=50,
                fmax=8000,
                classes_num=527,
            )
        elif self.sampling_rate == 32000:
            self.mel_model = Cnn14(
                features_list=features_list,
                sample_rate=32000,
                window_size=1024,
                hop_size=320,
                mel_bins=64,
                fmin=50,
                fmax=14000,
                classes_num=527,
            )
        else:
            raise ValueError(
                "We only support the evaluation on 16kHz and 32kHz sampling rate."
            )

        if self.sampling_rate == 16000:
            self._stft = Audio.TacotronSTFT(512, 160, 512, 64, 16000, 50, 8000)
        elif self.sampling_rate == 32000:
            self._stft = Audio.TacotronSTFT(1024, 320, 1024, 64, 32000, 50, 14000)
        else:
            raise ValueError(
                "We only support the evaluation on 16kHz and 32kHz sampling rate."
            )

        self.mel_model.eval()
        self.mel_model.to(self.device)
        self.fbin_mean, self.fbin_std = None, None

    def main(
        self,
        generate_files_path,
        groundtruth_path,
        limit_num=None,
    ):
        self.file_init_check(generate_files_path)
        self.file_init_check(groundtruth_path)

        same_name = self.get_filename_intersection_ratio(
            generate_files_path, groundtruth_path, limit_num=limit_num
        )

        metrics = self.calculate_metrics(generate_files_path, groundtruth_path, same_name, limit_num)

        return metrics

    def file_init_check(self, dir):
        assert os.path.exists(dir), "The path does not exist %s" % dir
        assert len(os.listdir(dir)) > 1, "There is no files in %s" % dir

    def get_filename_intersection_ratio(
        self, dir1, dir2, threshold=0.99, limit_num=None
    ):
        self.datalist1 = [os.path.join(dir1, x) for x in os.listdir(dir1)]
        self.datalist1 = sorted(self.datalist1)
        self.datalist1 = [item for item in self.datalist1 if item.endswith(".wav")]

        self.datalist2 = [os.path.join(dir2, x) for x in os.listdir(dir2)]
        self.datalist2 = sorted(self.datalist2)
        self.datalist2 = [item for item in self.datalist2 if item.endswith(".wav")]

        data_dict1 = {os.path.basename(x): x for x in self.datalist1}
        data_dict2 = {os.path.basename(x): x for x in self.datalist2}

        keyset1 = set(data_dict1.keys())
        keyset2 = set(data_dict2.keys())

        intersect_keys = keyset1.intersection(keyset2)
        if (
            len(intersect_keys) / len(keyset1) > threshold
            and len(intersect_keys) / len(keyset2) > threshold
        ):
            '''
            print(
                "+Two path have %s intersection files out of total %s & %s files. Processing two folder with same_name=True"
                % (len(intersect_keys), len(keyset1), len(keyset2))
            )
            '''
            return True
        else:
            '''
            print(
                "-Two path have %s intersection files out of total %s & %s files. Processing two folder with same_name=False"
                % (len(intersect_keys), len(keyset1), len(keyset2))
            )
            '''
            return False

    def calculate_lsd(self, pairedloader, same_name=True, time_offset=160 * 7):
        if same_name == False:
            return {
                "lsd": -1,
                "ssim_stft": -1,
            }
        # print("Calculating LSD using a time offset of %s ..." % time_offset)
        lsd_avg = []
        ssim_stft_avg = []
        for _, _, filename, (audio1, audio2) in tqdm(pairedloader, leave=False):
            audio1 = audio1.cpu().numpy()[0, 0]
            audio2 = audio2.cpu().numpy()[0, 0]

            # If you use HIFIGAN (verified on 2023-01-12), you need seven frames' offset
            audio1 = audio1[time_offset:]

            audio1 = audio1 - np.mean(audio1)
            audio2 = audio2 - np.mean(audio2)

            audio1 = audio1 / np.max(np.abs(audio1))
            audio2 = audio2 / np.max(np.abs(audio2))

            min_len = min(audio1.shape[0], audio2.shape[0])

            audio1, audio2 = audio1[:min_len], audio2[:min_len]

            try:
                result = self.lsd(audio1, audio2)
                lsd_avg.append(result["lsd"])
                ssim_stft_avg.append(result["ssim"])
            except:
                continue

        return {"lsd": np.mean(lsd_avg), "ssim_stft": np.mean(ssim_stft_avg)}

    def lsd(self, audio1, audio2):
        result = self.lsd_metric.evaluation(audio1, audio2, None)
        return result

    def calculate_psnr_ssim(self, pairedloader, same_name=True):
        if same_name == False:
            return {"psnr": -1, "ssim": -1}
        psnr_avg = []
        ssim_avg = []
        for mel_gen, mel_target, filename, _ in tqdm(pairedloader, leave=False):
            mel_gen = mel_gen.cpu().numpy()[0]
            mel_target = mel_target.cpu().numpy()[0]
            psnrval = psnr(mel_gen, mel_target)
            if np.isinf(psnrval):
                print("Infinite value encountered in psnr %s " % filename)
                continue
            psnr_avg.append(psnrval)
            ssim_avg.append(ssim(mel_gen, mel_target))
        return {"psnr": np.mean(psnr_avg), "ssim": np.mean(ssim_avg)}

    def calculate_metrics(self, generate_files_path, groundtruth_path, same_name, limit_num=None):
        # Generation, target
        torch.manual_seed(0)

        num_workers = 0

        outputloader = DataLoader(
            WaveDataset(
                generate_files_path,
                self.sampling_rate,
                limit_num=limit_num,
            ),
            batch_size=1,
            sampler=None,
            num_workers=num_workers,
        )

        resultloader = DataLoader(
            WaveDataset(
                groundtruth_path,
                self.sampling_rate,
                limit_num=limit_num,
            ),
            batch_size=1,
            sampler=None,
            num_workers=num_workers,
        )

        pairedloader = DataLoader(
            MelPairedDataset(
                generate_files_path,
                groundtruth_path,
                self._stft,
                self.sampling_rate,
                self.fbin_mean,
                self.fbin_std,
                limit_num=limit_num,
            ),
            batch_size=1,
            sampler=None,
            num_workers=16,
        )

        out = {}

        metric_lsd = self.calculate_lsd(pairedloader, same_name=same_name)
        out.update(metric_lsd)

        featuresdict_2 = self.get_featuresdict(resultloader)
        featuresdict_1 = self.get_featuresdict(outputloader)

        # if cfg.have_kl:
        metric_psnr_ssim = self.calculate_psnr_ssim(pairedloader, same_name=same_name)
        out.update(metric_psnr_ssim)

        metric_kl, kl_ref, paths_1 = calculate_kl(
            featuresdict_1, featuresdict_2, "logits", same_name
        )
        out.update(metric_kl)

        metric_isc = calculate_isc(
            featuresdict_1,
            feat_layer_name="logits",
            splits=10,
            samples_shuffle=True,
            rng_seed=2020,
        )
        out.update(metric_isc)

        metric_fid = calculate_fid(
            featuresdict_1, featuresdict_2, feat_layer_name="2048"
        )
        out.update(metric_fid)

        # Gen, target
        fad_score = self.frechet.score(generate_files_path, groundtruth_path, limit_num=limit_num)

        out.update(fad_score)

        metric_kid = calculate_kid(
            featuresdict_1,
            featuresdict_2,
            feat_layer_name="2048",
            subsets=100,
            subset_size=1000,
            degree=3,
            gamma=None,
            coef0=1,
            rng_seed=2020,
        )
        out.update(metric_kid)

        '''
        print("\n".join((f"{k}: {v:.7f}" for k, v in out.items())))
        print("\n")
        print(limit_num)
        print(
            f'KL_Sigmoid: {out.get("kullback_leibler_divergence_sigmoid", float("nan")):8.5f};',
            f'KL: {out.get("kullback_leibler_divergence_softmax", float("nan")):8.5f};',
            f'PSNR: {out.get("psnr", float("nan")):.5f}',
            f'SSIM: {out.get("ssim", float("nan")):.5f}',
            f'ISc: {out.get("inception_score_mean", float("nan")):8.5f} ({out.get("inception_score_std", float("nan")):5f});',
            f'KID: {out.get("kernel_inception_distance_mean", float("nan")):.5f}',
            f'({out.get("kernel_inception_distance_std", float("nan")):.5f})',
            f'FD: {out.get("frechet_distance", float("nan")):8.5f};',
            f'FAD: {out.get("frechet_audio_distance", float("nan")):.5f}',
            f'LSD: {out.get("lsd", float("nan")):.5f}',
            f'SSIM_STFT: {out.get("ssim_stft", float("nan")):.5f}',
        )
        '''
        result = {
            "frechet_distance": out.get("frechet_distance", float("nan")),
            "frechet_audio_distance": out.get("frechet_audio_distance", float("nan")),
            "kl_sigmoid": out.get(
                "kullback_leibler_divergence_sigmoid", float("nan")
            ),
            "kl_softmax": out.get(
                "kullback_leibler_divergence_softmax", float("nan")
            ),
            "lsd": out.get("lsd", float("nan")),
            "psnr": out.get("psnr", float("nan")),
            "ssim": out.get("ssim", float("nan")),
            "ssim_stft": out.get("ssim_stft", float("nan")),
            "is_mean": out.get("inception_score_mean", float("nan")),
            "is_std": out.get("inception_score_std", float("nan")),
            "kid_mean": out.get(
                "kernel_inception_distance_mean", float("nan")
            ),
            "kid_std": out.get(
                "kernel_inception_distance_std", float("nan")
            ),
        }
        result = {k: round(v, 4) for k, v in result.items()}
        json_path = generate_files_path + "_evaluation_results.json"
        write_json(result, json_path)
        return result

    def get_featuresdict(self, dataloader):

        out = None
        out_meta = None

        # transforms=StandardNormalizeAudio()

        for waveform, filename in tqdm(dataloader, leave=False):
            try:
                metadict = {
                    "file_path_": filename,
                }
                waveform = waveform.squeeze(1)

                # batch = transforms(batch)
                waveform = waveform.float().to(self.device)

                with torch.no_grad():
                    featuresdict = self.mel_model(waveform)

                # featuresdict = self.mel_model.convert_features_tuple_to_dict(features)
                featuresdict = {k: [v.cpu()] for k, v in featuresdict.items()}

                if out is None:
                    out = featuresdict
                else:
                    out = {k: out[k] + featuresdict[k] for k in out.keys()}

                if out_meta is None:
                    out_meta = metadict
                else:
                    out_meta = {k: out_meta[k] + metadict[k] for k in out_meta.keys()}
            except Exception as e:
                import ipdb

                ipdb.set_trace()
                print("PANNs Inference error: ", e)
                continue

        out = {k: torch.cat(v, dim=0) for k, v in out.items()}
        return {**out, **out_meta}

    def sample_from(self, samples, number_to_use):
        assert samples.shape[0] >= number_to_use
        rand_order = np.random.permutation(samples.shape[0])
        return samples[rand_order[: samples.shape[0]], :]

'''
if __name__ == "__main__":
    import yaml
    import argparse
    from audioldm_eval import EvaluationHelper
    import torch

    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-g",
        "--generation_result_path",
        type=str,
        required=False,
        help="Audio sampling rate during evaluation",
        default="/mnt/fast/datasets/audio/audioset/2million_audioset_wav/balanced_train_segments",
    )

    parser.add_argument(
        "-t",
        "--target_audio_path",
        type=str,
        required=False,
        help="Audio sampling rate during evaluation",
        default="/mnt/fast/datasets/audio/audioset/2million_audioset_wav/eval_segments",
    )

    parser.add_argument(
        "-sr",
        "--sampling_rate",
        type=int,
        required=False,
        help="Audio sampling rate during evaluation",
        default=16000,
    )

    parser.add_argument(
        "-l",
        "--limit_num",
        type=int,
        required=False,
        help="Audio clip numbers limit for evaluation",
        default=None,
    )

    args = parser.parse_args()

    device = torch.device(f"cuda:{0}")

    evaluator = EvaluationHelper(args.sampling_rate, device)

    metrics = evaluator.main(
        args.generation_result_path,
        args.target_audio_path,
        limit_num=args.limit_num,
        same_name=args.same_name,
    )

    print(metrics)
'''