File size: 6,715 Bytes
9a6dac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import os
import numpy as np
import torchaudio
from tqdm import tqdm

def pad_short_audio(audio, min_samples=32000):
    if(audio.size(-1) < min_samples):
        audio = torch.nn.functional.pad(audio, (0, min_samples - audio.size(-1)), mode='constant', value=0.0)
    return audio

class MelPairedDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        datadir1,
        datadir2,
        _stft,
        sr=16000,
        fbin_mean=None,
        fbin_std=None,
        augment=False,
        limit_num=None,
    ):
        self.datalist1 = [os.path.join(datadir1, x) for x in os.listdir(datadir1)]
        self.datalist1 = sorted(self.datalist1)
        self.datalist1 = [item for item in self.datalist1 if item.endswith(".wav")]

        self.datalist2 = [os.path.join(datadir2, x) for x in os.listdir(datadir2)]
        self.datalist2 = sorted(self.datalist2)
        self.datalist2 = [item for item in self.datalist2 if item.endswith(".wav")]

        if limit_num is not None:
            self.datalist1 = self.datalist1[:limit_num]
            self.datalist2 = self.datalist2[:limit_num]

        self.align_two_file_list()

        self._stft = _stft
        self.sr = sr
        self.augment = augment

        # if fbin_mean is not None:
        #     self.fbin_mean = fbin_mean[..., None]
        #     self.fbin_std = fbin_std[..., None]
        # else:
        #     self.fbin_mean = None
        #     self.fbin_std = None

    def align_two_file_list(self):
        data_dict1 = {os.path.basename(x): x for x in self.datalist1}
        data_dict2 = {os.path.basename(x): x for x in self.datalist2}

        keyset1 = set(data_dict1.keys())
        keyset2 = set(data_dict2.keys())

        intersect_keys = keyset1.intersection(keyset2)

        self.datalist1 = [data_dict1[k] for k in intersect_keys]
        self.datalist2 = [data_dict2[k] for k in intersect_keys]

        # print("Two path have %s intersection files" % len(intersect_keys))

    def __getitem__(self, index):
        while True:
            try:
                filename1 = self.datalist1[index]
                filename2 = self.datalist2[index]
                mel1, _, audio1 = self.get_mel_from_file(filename1)
                mel2, _, audio2 = self.get_mel_from_file(filename2)
                break
            except Exception as e:
                print(index, e)
                index = (index + 1) % len(self.datalist)

        # if(self.fbin_mean is not None):
        #     mel = (mel - self.fbin_mean) / self.fbin_std
        min_len = min(mel1.shape[-1], mel2.shape[-1])
        return (
            mel1[..., :min_len],
            mel2[..., :min_len],
            os.path.basename(filename1),
            (audio1, audio2),
        )

    def __len__(self):
        return len(self.datalist1)

    def get_mel_from_file(self, audio_file):
        audio, file_sr = torchaudio.load(audio_file)
        # Only use the first channel
        audio = audio[0:1,...]
        audio = audio - audio.mean()

        if file_sr != self.sr:
            audio = torchaudio.functional.resample(
                audio, orig_freq=file_sr, new_freq=self.sr
            )

        if self._stft is not None:
            melspec, energy = self.get_mel_from_wav(audio[0, ...])
        else:
            melspec, energy = None, None

        return melspec, energy, audio

    def get_mel_from_wav(self, audio):
        audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
        audio = torch.autograd.Variable(audio, requires_grad=False)

        # =========================================================================
        # Following the processing in https://github.com/v-iashin/SpecVQGAN/blob/5bc54f30eb89f82d129aa36ae3f1e90b60e73952/vocoder/mel2wav/extract_mel_spectrogram.py#L141
        melspec, energy = self._stft.mel_spectrogram(audio, normalize_fun=torch.log10)
        melspec = (melspec * 20) - 20
        melspec = (melspec + 100) / 100
        melspec = torch.clip(melspec, min=0, max=1.0)
        # =========================================================================
        # Augment
        # if(self.augment):
        #     for i in range(1):
        #         random_start = int(torch.rand(1) * 950)
        #         melspec[0,:,random_start:random_start+50] = 0.0
        # =========================================================================
        melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
        energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
        return melspec, energy


class WaveDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        datadir,
        sr=16000,
        limit_num=None,
    ):
        self.datalist = [os.path.join(datadir, x) for x in os.listdir(datadir)]
        self.datalist = sorted(self.datalist)
        self.datalist = [item for item in self.datalist if item.endswith(".wav")]
        
        if limit_num is not None:
            self.datalist = self.datalist[:limit_num]
        self.sr = sr

    def __getitem__(self, index):
        while True:
            try:
                filename = self.datalist[index]
                waveform = self.read_from_file(filename)
                if waveform.size(-1) < 1:
                    raise ValueError("empty file %s" % filename)
                break
            except Exception as e:
                print(index, e)
                index = (index + 1) % len(self.datalist)
        
        return waveform, os.path.basename(filename)

    def __len__(self):
        return len(self.datalist)

    def read_from_file(self, audio_file):
        audio, file_sr = torchaudio.load(audio_file)
        # Only use the first channel
        audio = audio[0:1,...]
        audio = audio - audio.mean()

        if file_sr != self.sr and file_sr == 32000 and self.sr == 16000:
            audio = audio[..., ::2]
        if file_sr != self.sr and file_sr == 48000 and self.sr == 16000:
            audio = audio[..., ::3]
        elif file_sr != self.sr:
            audio = torchaudio.functional.resample(
                audio, orig_freq=file_sr, new_freq=self.sr
            )
        audio = pad_short_audio(audio, min_samples=32000)
        return audio


def load_npy_data(loader):
    new_train = []
    for mel, waveform, filename in tqdm(loader):
        batch = batch.float().numpy()
        new_train.append(
            batch.reshape(
                -1,
            )
        )
    new_train = np.array(new_train)
    return new_train


if __name__ == "__main__":
    path = "/scratch/combined/result/ground/00294 harvest festival rumour 1_mel.npy"
    temp = np.load(path)
    print("temp", temp.shape)